PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1574–m1575.
Published online 2008 November 20. doi:  10.1107/S1600536808036908
PMCID: PMC2959876

catena-Poly[[bis­(μ-3-carboxy­benzoato)bis­(1,10-phenanthroline)tricopper(II)]-di-μ3-isophthalato]

Abstract

The title copper coordination polymer, [Cu3(C8H4O4)2(C8H5O4)2(C10H8N2)2]n, was synthesized by reacting Cu(NO3)2, isophthalic acid and 1,10-phenanthroline under hydro­thermal conditions. The trinuclear unit presents a central almost planar CuO4 chromophore with the cation on a symmetry center, and two symmetry-related CuN2O3 groups with the metal centre in a distorted square-pyramidal environment. These units are bridged by isophthalate ligands into one-dimensional double-chain coordination polymers which are, in turn, connected by various π–π stacking inter­actions (face-to-face distance ca 3.45 Å) and O—H(...)O hydrogen bonds, forming a three-dimensional supra­molecular network.

Related literature

For related literature on the design and construction of coordination polymers, see: Amabilino & Stoddart (1995 [triangle]); Han et al. (2005 [triangle], 2007 [triangle], 2008 [triangle]); He & Han (2007 [triangle]); Ma et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1574-scheme1.jpg

Experimental

Crystal data

  • [Cu3(C8H4O4)2(C8H5O4)2(C10H8N2)2]
  • M r = 1209.5
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1574-efi1.jpg
  • a = 10.383 (1) Å
  • b = 10.659 (1) Å
  • c = 11.754 (1) Å
  • α = 83.147 (1)°
  • β = 86.191 (1)°
  • γ = 71.134 (1)°
  • V = 1221.6 (2) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.38 mm−1
  • T = 293 (2) K
  • 0.37 × 0.32 × 0.23 mm

Data collection

  • Bruker SMART APEX area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.631, T max = 0.738
  • 9575 measured reflections
  • 4741 independent reflections
  • 4241 reflections with I > 2σ(I)
  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.089
  • S = 1.09
  • 4741 reflections
  • 358 parameters
  • H-atom parameters constrained
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808036908/bg2210sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036908/bg2210Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Shanghai Municipal Education Commission, Project Nos. 2008068, 2008080.

supplementary crystallographic information

Comment

The design and construction of coordination polymers has attracted much attention owing to their intriguing topologies and potential applications as functional materials (Han et al., 2008, Ma et al., 2007). Many networks with various structural motifs have been documented in the past decade (Amabilino et al., 1995). Unlike pyridine 2,4-, 3,4- 2,5- and 2,6-dicarboxylic acids which were widely reported as bridging ligands to assemble various coordination polymers, isophthalic acid (H2ip) has been reported only scarcely in the role of multicarboxylate ligand (Han et al., 2007). We report here the synthesis and structure of the title copper(II) coordination polymer [Cu3(C8H4O4)2(C8H5O4)2(C10H8N2)]n,assembled from isophthalic acid, 1,10-phenanthroline(phen) and copper(II), (I).

In I, there is one and a half Cu(II) ions (Cu1 lies on center of symmetry), one ip, one Hip and one phen ligand in each independent crystallographic unit. Each Cu2 ion is coordinated by three oxygen atoms from two ip ligands and one Hip ligand in a mono-bidentate and bidentate coordination modes and two nitrogen atoms from a chelate phen ligand to furnish a distorted square pyramidal geometry. On the other hand, each Cu1 atom is four-coordinated by four oxygen atoms, forming a slightly distorted square geometry. (Fig.1 and Table 1).

The carboxylate oxygen atoms bridge three copper atoms (Cu2, Cu1 and Cu2i) via the syn–anti O,O-bridges to form a trinuclear [Cu3(ip)2(Hip)2(phen)2] subunit (Fig. 1), which are interconnected through the bridging ip groups to form an infinite one-dimensional double chain with Cu···Cu distances of 3.755 (3) and 9.994 (3) Å (Fig. 2). The lateral phen ligands from adjacent double-chains are paired to furnish moderately strong π—π stacking interactions (face-face distance ca 3.45 (1) Å) (He et al.,2007, Han et al., 2005), which extend the double-chains into two-dimensional wavelike layers parallel to the ab plane in the lattice. These layers are further linked via strong hydrogen bonds between uncoordinated carboxylate oxygen atoms of ip ligands (Table 2), forming a three-dimensional supramolecular network.

Experimental

A mixture of Cu(NO3)2.2H2O (0.5 mmol, 0.120 g), isophthalic acid (0.5 mmol, 0.084 g), NaOH (1 mmol, 0.04 g), and water (10 ml) was mixed in a 23 ml Teflon reactor, which was heated at 453 K for six days and then cooled to room temperature at a rate of 5 K h-1. Yield: 48%. CH&N analysis for C20H17N2O8Cu1.5 (found/calc): C, 47.05(47.22), H, 2.64(3.37), N, 5.73%(5.51%).

Refinement

The H atoms were placed at calculated positions in the riding model approximation (C—H 0.93 Å,O—H 0.82 Å), with their temperature factors set to 1.2 times those of the equivalent isotropic temperature factors of the parent atoms.

Figures

Fig. 1.
A trinuclear [Cu3(ip)2(Hip)2(phen)2] subunit with thermal ellipsoids at 30% probability. Symmetry transformations used to generate equivalent atoms: (i) -x+1,-y,-z+1; (ii) -x+1,-y,-z+2; (iii) x,y,z-1.
Fig. 2.
Packing view of I drawn along c and depicting the double chain fragment.

Crystal data

[Cu3(C8H4O4)2(C8H5O4)2(C10H8N2)2]Z = 1
Mr = 1209.5F000 = 613
Triclinic, P1Dx = 1.644 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 10.383 (1) ÅCell parameters from 2356 reflections
b = 10.659 (1) Åθ = 2.3–25.0º
c = 11.754 (1) ŵ = 1.38 mm1
α = 83.147 (1)ºT = 293 (2) K
β = 86.191 (1)ºBlock, green
γ = 71.134 (1)º0.37 × 0.32 × 0.23 mm
V = 1221.6 (2) Å3

Data collection

Bruker SMART APEX area-detector diffractometer4741 independent reflections
Radiation source: fine-focus sealed tube4241 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.063
T = 293(2) Kθmax = 26.0º
[var phi] and ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −12→12
Tmin = 0.631, Tmax = 0.738k = −13→13
9575 measured reflectionsl = −12→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.089  w = 1/[σ2(Fo2) + (0.0453P)2 + 0.1215P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
4741 reflectionsΔρmax = 0.43 e Å3
358 parametersΔρmin = −0.35 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.50000.00000.50000.02502 (10)
Cu20.76902 (2)−0.22278 (2)0.697826 (19)0.03033 (10)
C10.57791 (19)0.04808 (18)0.70129 (16)0.0290 (4)
C20.57869 (19)0.09529 (18)0.81581 (16)0.0281 (4)
C30.7018 (2)0.0843 (2)0.86308 (19)0.0404 (5)
H30.78310.05140.82190.048*
C40.7030 (2)0.1222 (3)0.9707 (2)0.0493 (6)
H40.78520.11711.00120.059*
C50.5830 (2)0.1680 (2)1.03389 (18)0.0402 (5)
H50.58500.19201.10710.048*
C60.46010 (18)0.17821 (17)0.98864 (16)0.0278 (4)
C70.45796 (18)0.14417 (17)0.87873 (16)0.0268 (4)
H70.37520.15410.84680.032*
C80.3300 (2)0.22144 (19)1.06009 (16)0.0316 (4)
C90.47836 (18)−0.22297 (18)0.61761 (15)0.0280 (4)
C100.41202 (18)−0.30677 (18)0.69616 (16)0.0282 (4)
C110.4890 (2)−0.4306 (2)0.74662 (19)0.0376 (5)
H110.5811−0.46450.72710.045*
C120.4301 (2)−0.5038 (2)0.8255 (2)0.0470 (6)
H120.4824−0.58710.85820.056*
C130.2936 (2)−0.4538 (2)0.8561 (2)0.0419 (5)
H130.2541−0.50300.90960.050*
C140.21559 (19)−0.32961 (19)0.80667 (16)0.0315 (4)
C150.27491 (18)−0.25778 (19)0.72611 (16)0.0287 (4)
H150.2221−0.17570.69170.034*
C160.0685 (2)−0.2698 (2)0.83842 (17)0.0358 (4)
C170.9058 (2)−0.1207 (2)0.48733 (18)0.0392 (5)
H170.8308−0.04380.48130.047*
C181.0192 (2)−0.1282 (3)0.4132 (2)0.0484 (6)
H181.0188−0.05700.35900.058*
C191.1296 (2)−0.2400 (3)0.4213 (2)0.0512 (6)
H191.2060−0.24440.37390.061*
C201.1287 (2)−0.3489 (2)0.5008 (2)0.0435 (5)
C211.2363 (2)−0.4740 (3)0.5150 (2)0.0554 (7)
H211.3160−0.48530.47050.067*
C221.2253 (2)−0.5748 (3)0.5903 (2)0.0536 (7)
H221.2964−0.65500.59570.064*
C231.1066 (2)−0.5616 (2)0.6627 (2)0.0451 (6)
C241.0861 (3)−0.6618 (2)0.7445 (2)0.0533 (6)
H241.1520−0.74540.75280.064*
C250.9713 (3)−0.6371 (2)0.8110 (2)0.0554 (7)
H250.9574−0.70370.86430.066*
C260.8730 (3)−0.5104 (2)0.7994 (2)0.0435 (5)
H260.7956−0.49370.84710.052*
C271.00094 (19)−0.4393 (2)0.65414 (18)0.0348 (4)
C281.01068 (19)−0.3337 (2)0.57116 (17)0.0334 (4)
N10.90243 (16)−0.22039 (16)0.56575 (14)0.0318 (4)
N20.88699 (17)−0.41398 (17)0.72270 (14)0.0345 (4)
O10.68897 (14)−0.03047 (14)0.66264 (12)0.0370 (3)
O20.47142 (14)0.08815 (14)0.64570 (11)0.0363 (3)
O30.34517 (15)0.22533 (15)1.16551 (12)0.0386 (3)
O40.22068 (15)0.25058 (19)1.01149 (13)0.0511 (4)
O50.60479 (13)−0.26213 (14)0.60173 (12)0.0346 (3)
O60.40038 (13)−0.11313 (13)0.57278 (12)0.0352 (3)
O70.02655 (15)−0.34182 (18)0.92198 (14)0.0495 (4)
H7A−0.0540−0.30450.93750.074*
O8−0.00380 (15)−0.16831 (17)0.78902 (15)0.0524 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.02711 (17)0.02716 (17)0.01884 (17)−0.00744 (13)0.00295 (12)−0.00007 (12)
Cu20.03051 (15)0.03137 (15)0.02253 (14)−0.00187 (10)0.00550 (10)−0.00313 (10)
C10.0350 (10)0.0269 (9)0.0239 (9)−0.0098 (8)0.0072 (8)−0.0022 (7)
C20.0332 (10)0.0256 (9)0.0233 (9)−0.0073 (7)0.0041 (7)−0.0027 (7)
C30.0300 (10)0.0534 (13)0.0360 (11)−0.0096 (9)0.0087 (8)−0.0137 (10)
C40.0313 (11)0.0773 (17)0.0428 (13)−0.0178 (11)0.0010 (9)−0.0201 (12)
C50.0427 (12)0.0531 (13)0.0272 (11)−0.0156 (10)0.0017 (9)−0.0143 (9)
C60.0324 (9)0.0240 (8)0.0244 (9)−0.0072 (7)0.0063 (7)−0.0019 (7)
C70.0287 (9)0.0254 (9)0.0236 (9)−0.0064 (7)0.0017 (7)0.0000 (7)
C80.0367 (10)0.0292 (9)0.0256 (10)−0.0084 (8)0.0083 (8)−0.0014 (8)
C90.0328 (10)0.0300 (9)0.0229 (9)−0.0120 (8)0.0034 (7)−0.0057 (7)
C100.0307 (9)0.0292 (9)0.0261 (9)−0.0118 (8)0.0020 (7)−0.0035 (7)
C110.0293 (10)0.0335 (10)0.0447 (12)−0.0058 (8)0.0044 (9)0.0019 (9)
C120.0408 (12)0.0332 (11)0.0579 (15)−0.0059 (9)0.0016 (10)0.0124 (10)
C130.0416 (11)0.0403 (11)0.0437 (13)−0.0181 (9)0.0045 (10)0.0073 (9)
C140.0315 (10)0.0371 (10)0.0286 (10)−0.0148 (8)0.0012 (8)−0.0042 (8)
C150.0295 (9)0.0299 (9)0.0258 (9)−0.0087 (7)0.0001 (7)−0.0016 (7)
C160.0318 (10)0.0483 (12)0.0290 (10)−0.0154 (9)0.0015 (8)−0.0050 (9)
C170.0418 (11)0.0409 (11)0.0333 (11)−0.0121 (9)0.0054 (9)−0.0052 (9)
C180.0521 (14)0.0549 (14)0.0419 (13)−0.0237 (11)0.0148 (11)−0.0100 (11)
C190.0429 (13)0.0716 (17)0.0460 (14)−0.0258 (12)0.0184 (11)−0.0227 (12)
C200.0322 (11)0.0585 (14)0.0417 (12)−0.0116 (10)0.0052 (9)−0.0240 (11)
C210.0298 (11)0.0708 (17)0.0608 (16)−0.0020 (11)0.0083 (11)−0.0329 (14)
C220.0359 (12)0.0541 (15)0.0596 (16)0.0092 (11)−0.0062 (11)−0.0264 (13)
C230.0415 (12)0.0417 (12)0.0465 (13)0.0019 (10)−0.0133 (10)−0.0183 (10)
C240.0591 (15)0.0371 (12)0.0533 (15)0.0052 (11)−0.0219 (13)−0.0109 (11)
C250.0806 (19)0.0386 (12)0.0422 (14)−0.0110 (12)−0.0198 (13)0.0021 (10)
C260.0534 (13)0.0417 (12)0.0312 (11)−0.0092 (10)−0.0035 (10)−0.0026 (9)
C270.0295 (10)0.0385 (11)0.0329 (11)−0.0020 (8)−0.0058 (8)−0.0124 (8)
C280.0256 (9)0.0413 (11)0.0325 (10)−0.0056 (8)0.0001 (8)−0.0151 (9)
N10.0282 (8)0.0355 (9)0.0305 (9)−0.0069 (7)0.0037 (7)−0.0099 (7)
N20.0363 (9)0.0350 (9)0.0285 (9)−0.0054 (7)−0.0022 (7)−0.0052 (7)
O10.0430 (8)0.0321 (7)0.0273 (7)−0.0019 (6)0.0116 (6)−0.0055 (6)
O20.0366 (7)0.0459 (8)0.0253 (7)−0.0103 (6)0.0030 (6)−0.0096 (6)
O30.0442 (8)0.0455 (8)0.0239 (7)−0.0119 (7)0.0103 (6)−0.0078 (6)
O40.0315 (8)0.0806 (12)0.0331 (8)−0.0077 (8)0.0078 (7)−0.0072 (8)
O50.0279 (7)0.0439 (8)0.0324 (8)−0.0122 (6)0.0072 (6)−0.0075 (6)
O60.0332 (7)0.0342 (7)0.0350 (8)−0.0104 (6)0.0052 (6)0.0047 (6)
O70.0308 (7)0.0736 (11)0.0401 (9)−0.0171 (7)0.0085 (6)0.0055 (8)
O80.0360 (8)0.0567 (10)0.0538 (10)−0.0048 (7)0.0072 (8)0.0032 (8)

Geometric parameters (Å, °)

Cu1—O61.923 (1)C13—C141.390 (3)
Cu1—O2i2.010 (1)C13—H130.93
Cu1—O22.010 (1)C14—C151.384 (3)
Cu2—O3ii1.935 (1)C14—C161.493 (3)
Cu2—O11.951 (1)C15—H150.93
Cu2—N22.008 (2)C16—O81.205 (3)
Cu2—N12.014 (2)C16—O71.313 (3)
Cu2—O52.278 (1)C17—N11.328 (3)
C1—O21.247 (2)C17—C181.404 (3)
C1—O11.278 (2)C17—H170.93
C1—C21.494 (3)C18—C191.360 (3)
C2—C71.391 (2)C18—H180.93
C2—C31.392 (3)C19—C201.403 (4)
C3—C41.375 (3)C19—H190.93
C3—H30.93C20—C281.407 (3)
C4—C51.383 (3)C20—C211.436 (3)
C4—H40.9300C21—C221.337 (4)
C5—C61.382 (3)C21—H210.93
C5—H50.93C22—C231.429 (4)
C6—C71.386 (3)C22—H220.93
C6—C81.510 (2)C23—C271.404 (3)
C7—H70.93C23—C241.409 (4)
C8—O41.236 (2)C24—C251.351 (4)
C8—O31.266 (2)C24—H240.93
C9—O51.251 (2)C25—C261.402 (3)
C9—O61.265 (2)C25—H250.93
C9—C101.497 (3)C26—N21.322 (3)
C10—C151.386 (2)C26—H260.93
C10—C111.388 (3)C27—N21.357 (3)
C11—C121.380 (3)C27—C281.424 (3)
C11—H110.9300C28—N11.356 (2)
C12—C131.383 (3)O3—Cu2ii1.9349 (14)
C12—H120.9300O7—H7A0.82
O6—Cu1—O2i92.30 (6)C14—C15—C10120.78 (17)
O6i—Cu1—O292.30 (6)C14—C15—H15119.6
O6—Cu1—O287.70 (6)C10—C15—H15119.6
O3ii—Cu2—O192.66 (6)O8—C16—O7124.33 (19)
O3ii—Cu2—N296.52 (7)O8—C16—C14122.77 (19)
O1—Cu2—N2168.29 (7)O7—C16—C14112.85 (18)
O3ii—Cu2—N1174.37 (6)N1—C17—C18122.0 (2)
O1—Cu2—N188.24 (6)N1—C17—H17119.0
N2—Cu2—N181.94 (7)C18—C17—H17119.0
O3ii—Cu2—O587.08 (6)C19—C18—C17119.6 (2)
O1—Cu2—O591.79 (6)C19—C18—H18120.2
N2—Cu2—O595.92 (6)C17—C18—H18120.2
N1—Cu2—O598.46 (6)C18—C19—C20120.2 (2)
O2—C1—O1122.29 (17)C18—C19—H19119.9
O2—C1—C2119.67 (16)C20—C19—H19119.9
O1—C1—C2118.02 (17)C19—C20—C28116.6 (2)
C7—C2—C3119.32 (17)C19—C20—C21125.7 (2)
C7—C2—C1120.71 (17)C28—C20—C21117.8 (2)
C3—C2—C1119.89 (17)C22—C21—C20121.9 (2)
C4—C3—C2119.93 (18)C22—C21—H21119.0
C4—C3—H3120.0C20—C21—H21119.0
C2—C3—H3120.0C21—C22—C23121.3 (2)
C3—C4—C5120.5 (2)C21—C22—H22119.3
C3—C4—H4119.7C23—C22—H22119.3
C5—C4—H4119.7C27—C23—C24116.2 (2)
C6—C5—C4120.24 (19)C27—C23—C22118.5 (2)
C6—C5—H5119.9C24—C23—C22125.3 (2)
C4—C5—H5119.9C25—C24—C23120.3 (2)
C5—C6—C7119.43 (17)C25—C24—H24119.8
C5—C6—C8120.12 (17)C23—C24—H24119.8
C7—C6—C8120.41 (17)C24—C25—C26119.6 (2)
C6—C7—C2120.50 (18)C24—C25—H25120.2
C6—C7—H7119.7C26—C25—H25120.2
C2—C7—H7119.7N2—C26—C25122.1 (2)
O4—C8—O3126.40 (18)N2—C26—H26118.9
O4—C8—C6118.12 (17)C25—C26—H26118.9
O3—C8—C6115.48 (18)N2—C27—C23123.3 (2)
O5—C9—O6123.92 (17)N2—C27—C28116.57 (17)
O5—C9—C10119.67 (17)C23—C27—C28120.1 (2)
O6—C9—C10116.40 (15)N1—C28—C20123.2 (2)
C15—C10—C11118.97 (17)N1—C28—C27116.50 (17)
C15—C10—C9120.43 (16)C20—C28—C27120.31 (19)
C11—C10—C9120.43 (16)C17—N1—C28118.42 (17)
C12—C11—C10120.60 (18)C17—N1—Cu2129.29 (14)
C12—C11—H11119.7C28—N1—Cu2111.69 (14)
C10—C11—H11119.7C26—N2—C27118.37 (18)
C11—C12—C13120.21 (19)C26—N2—Cu2129.40 (15)
C11—C12—H12119.9C27—N2—Cu2112.03 (14)
C13—C12—H12119.9C1—O1—Cu2129.14 (13)
C12—C13—C14119.75 (19)C1—O2—Cu1110.19 (11)
C12—C13—H13120.1C8—O3—Cu2ii134.22 (14)
C14—C13—H13120.1C9—O5—Cu2129.50 (12)
C15—C14—C13119.68 (18)C9—O6—Cu1112.10 (11)
C15—C14—C16118.41 (18)C16—O7—H7A109.5
C13—C14—C16121.91 (18)
O2—C1—C2—C722.0 (3)C19—C20—C28—C27179.90 (19)
O1—C1—C2—C7−159.56 (17)C21—C20—C28—C270.7 (3)
O2—C1—C2—C3−161.19 (19)N2—C27—C28—N1−2.8 (3)
O1—C1—C2—C317.2 (3)C23—C27—C28—N1177.86 (17)
C7—C2—C3—C4−0.3 (3)N2—C27—C28—C20176.54 (18)
C1—C2—C3—C4−177.1 (2)C23—C27—C28—C20−2.8 (3)
C2—C3—C4—C51.7 (4)C18—C17—N1—C28−2.1 (3)
C3—C4—C5—C6−1.1 (4)C18—C17—N1—Cu2168.21 (16)
C4—C5—C6—C7−1.0 (3)C20—C28—N1—C172.6 (3)
C4—C5—C6—C8176.8 (2)C27—C28—N1—C17−178.15 (18)
C5—C6—C7—C22.4 (3)C20—C28—N1—Cu2−169.34 (16)
C8—C6—C7—C2−175.41 (16)C27—C28—N1—Cu29.9 (2)
C3—C2—C7—C6−1.8 (3)O1—Cu2—N1—C17−7.31 (18)
C1—C2—C7—C6174.98 (16)N2—Cu2—N1—C17179.07 (19)
C5—C6—C8—O4168.3 (2)O5—Cu2—N1—C1784.24 (18)
C7—C6—C8—O4−13.9 (3)O1—Cu2—N1—C28163.50 (13)
C5—C6—C8—O3−11.0 (3)N2—Cu2—N1—C28−10.12 (13)
C7—C6—C8—O3166.82 (17)O5—Cu2—N1—C28−104.95 (13)
O5—C9—C10—C15171.84 (17)C25—C26—N2—C27−0.5 (3)
O6—C9—C10—C15−6.6 (3)C25—C26—N2—Cu2−174.86 (16)
O5—C9—C10—C11−3.4 (3)C23—C27—N2—C26−1.9 (3)
O6—C9—C10—C11178.12 (18)C28—C27—N2—C26178.76 (19)
C15—C10—C11—C12−0.1 (3)C23—C27—N2—Cu2173.43 (15)
C9—C10—C11—C12175.2 (2)C28—C27—N2—Cu2−5.9 (2)
C10—C11—C12—C13−0.7 (4)O3ii—Cu2—N2—C268.8 (2)
C11—C12—C13—C140.3 (4)O1—Cu2—N2—C26150.2 (3)
C12—C13—C14—C150.8 (3)N1—Cu2—N2—C26−176.6 (2)
C12—C13—C14—C16−178.7 (2)O5—Cu2—N2—C26−78.90 (19)
C13—C14—C15—C10−1.6 (3)O3ii—Cu2—N2—C27−165.84 (13)
C16—C14—C15—C10177.98 (17)O1—Cu2—N2—C27−24.5 (4)
C11—C10—C15—C141.2 (3)N1—Cu2—N2—C278.70 (13)
C9—C10—C15—C14−174.09 (17)O5—Cu2—N2—C27106.44 (13)
C15—C14—C16—O87.6 (3)O2—C1—O1—Cu2−100.2 (2)
C13—C14—C16—O8−172.9 (2)C2—C1—O1—Cu281.5 (2)
C15—C14—C16—O7−174.78 (18)O3ii—Cu2—O1—C1−16.66 (17)
C13—C14—C16—O74.8 (3)N2—Cu2—O1—C1−158.3 (3)
N1—C17—C18—C19−0.1 (4)N1—Cu2—O1—C1168.91 (17)
C17—C18—C19—C201.9 (4)O5—Cu2—O1—C170.49 (17)
C18—C19—C20—C28−1.4 (3)O1—C1—O2—Cu14.6 (2)
C18—C19—C20—C21177.7 (2)C2—C1—O2—Cu1−177.06 (13)
C19—C20—C21—C22−177.6 (2)O6i—Cu1—O2—C1−76.87 (13)
C28—C20—C21—C221.5 (3)O6—Cu1—O2—C1103.13 (13)
C20—C21—C22—C23−1.6 (4)O4—C8—O3—Cu2ii21.2 (3)
C21—C22—C23—C27−0.6 (3)C6—C8—O3—Cu2ii−159.55 (13)
C21—C22—C23—C24−179.8 (2)O6—C9—O5—Cu287.4 (2)
C27—C23—C24—C25−1.3 (3)C10—C9—O5—Cu2−91.0 (2)
C22—C23—C24—C25178.0 (2)O3ii—Cu2—O5—C934.20 (17)
C23—C24—C25—C26−0.8 (4)O1—Cu2—O5—C9−58.37 (17)
C24—C25—C26—N21.8 (4)N2—Cu2—O5—C9130.45 (17)
C24—C23—C27—N22.8 (3)N1—Cu2—O5—C9−146.85 (17)
C22—C23—C27—N2−176.6 (2)O5—C9—O6—Cu1−10.3 (2)
C24—C23—C27—C28−177.90 (19)C10—C9—O6—Cu1168.13 (12)
C22—C23—C27—C282.8 (3)O2i—Cu1—O6—C984.72 (13)
C19—C20—C28—N1−0.8 (3)O2—Cu1—O6—C9−95.28 (13)
C21—C20—C28—N1179.97 (19)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O7—H7A···O4iii0.821.732.539 (2)170

Symmetry codes: (iii) −x, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2210).

References

  • Amabilino, D. B. & Stoddart, J. F. (1995). Chem. Rev.95, 2725.
  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Han, Z. B., Cheng, X. N. & Chen, X. M. (2005). Cryst. Growth Des.5, 695–700.
  • Han, Z. B., He, Y. K., Ge, C. H., Ribas, J. & Xu, L. (2007). Dalton Trans pp. 3020–3024. [PubMed]
  • Han, Z. B., He, Y. K., Tong, M. L., Song, Y. J., Song, X. M. & Yang, L. G. (2008). CrystEngComm, 10, 1070–1073.
  • He, Y. K. & Han, Z. B. (2007). Inorg. Chem. Commun 10, 1523–1526.
  • Ma, Y., Han, Z. B., He, Y. K. & Yang, L. G. (2007). Chem. Commun. pp. 4107-4109. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography