PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2444.
Published online 2008 November 26. doi:  10.1107/S1600536808038622
PMCID: PMC2959875

Biphenyl-4-carbaldehyde azine

Abstract

The complete mol­ecule of the title compound, C26H20N2, is generated by crystallographic inversion symmetry. The terminal phenyl ring is twisted by 19.2 (1)° with respect to the adjacent phenyl­ene ring.

Related literature

For the synthesis, see: Malkes & Timchenko (1961 [triangle]). For biological evaluation, see: Cremlyn et al. (1991 [triangle]). The compound is a formylating agent for aromatic compounds; see: Kantlehner et al. (2004 [triangle]). When treated with cerium ammonium nitrate, the aldehyde is regenerated; see Giurg & Mlochowski (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2444-scheme1.jpg

Experimental

Crystal data

  • C26H20N2
  • M r = 360.44
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2444-efi1.jpg
  • a = 20.5417 (6) Å
  • b = 7.1358 (2) Å
  • c = 6.3402 (2) Å
  • β = 93.632 (2)°
  • V = 927.49 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 100 (2) K
  • 0.40 × 0.25 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: none
  • 6044 measured reflections
  • 2104 independent reflections
  • 1607 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.127
  • S = 1.05
  • 2104 reflections
  • 127 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808038622/hb2856sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038622/hb2856Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The complete molecule of the title compound, (I) is generated by crystallographic inversion symmetry (Fig. 1). The terminal phenyl ring is twisted by 19.2 (1) ° with respect to the phenylene ring.

Experimental

4-Phenyl benzaldehyde (0.72 g, 4 mmol) and 80% hydrazine hydrate (0.10 g, 2 mmol) were heated in ethanol (25 ml) for 1 h. The resulting product was filtered and washed with ethanol and then recrystallized from hexane to yield yellow prisms of (I).

Refinement

The H atoms were placed in calculated positions (C—H = 0.95 Å) and refined as riding with U(H) = 1.2U(C).

Figures

Fig. 1.
The molecular structure of (I) with atoms shown at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radiius. The unlabelled atoms are generated by the symmetry operation (1–x, 1–y, 1–z).

Crystal data

C26H20N2F000 = 380
Mr = 360.44Dx = 1.291 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1869 reflections
a = 20.5417 (6) Åθ = 2.9–26.2º
b = 7.1358 (2) ŵ = 0.08 mm1
c = 6.3402 (2) ÅT = 100 (2) K
β = 93.632 (2)ºPrism, yellow
V = 927.49 (5) Å30.40 × 0.25 × 0.10 mm
Z = 2

Data collection

Bruker SMART APEX CCD diffractometer1607 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Monochromator: graphiteθmax = 27.5º
T = 100(2) Kθmin = 1.0º
ω scansh = −25→26
Absorption correction: Nonek = −8→9
6044 measured reflectionsl = −8→8
2104 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.127  w = 1/[σ2(Fo2) + (0.0641P)2 + 0.2493P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2104 reflectionsΔρmax = 0.31 e Å3
127 parametersΔρmin = −0.21 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.46654 (6)0.48506 (18)0.47390 (19)0.0260 (3)
C10.45139 (7)0.5211 (2)0.2795 (2)0.0229 (3)
H10.48470.55980.19160.027*
C20.38464 (7)0.50463 (19)0.1880 (2)0.0202 (3)
C30.37032 (7)0.5594 (2)−0.0206 (2)0.0218 (3)
H30.40450.6006−0.10340.026*
C40.30685 (7)0.5548 (2)−0.1095 (2)0.0205 (3)
H40.29830.5927−0.25220.025*
C50.25534 (6)0.49541 (19)0.0078 (2)0.0169 (3)
C60.27039 (7)0.43846 (19)0.2177 (2)0.0198 (3)
H60.23630.39720.30080.024*
C70.33352 (7)0.4412 (2)0.3054 (2)0.0212 (3)
H70.34240.39980.44670.025*
C80.18693 (6)0.49529 (18)−0.08434 (19)0.0170 (3)
C90.16848 (7)0.60293 (19)−0.2631 (2)0.0202 (3)
H90.20050.6745−0.32870.024*
C100.10445 (7)0.6072 (2)−0.3461 (2)0.0215 (3)
H100.09320.6811−0.46760.026*
C110.05681 (7)0.5041 (2)−0.2529 (2)0.0200 (3)
H110.01280.5083−0.30840.024*
C120.07425 (6)0.39455 (19)−0.0772 (2)0.0197 (3)
H120.04200.3224−0.01320.024*
C130.13839 (6)0.38970 (19)0.0054 (2)0.0186 (3)
H130.14960.31330.12490.022*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0154 (6)0.0334 (7)0.0285 (7)−0.0007 (5)−0.0034 (5)−0.0004 (5)
C10.0174 (7)0.0249 (8)0.0261 (7)0.0009 (5)−0.0003 (5)−0.0009 (6)
C20.0171 (7)0.0195 (7)0.0235 (7)0.0013 (5)−0.0018 (5)−0.0020 (5)
C30.0181 (7)0.0244 (7)0.0231 (7)−0.0002 (5)0.0028 (5)0.0015 (5)
C40.0205 (7)0.0229 (7)0.0178 (6)0.0009 (5)0.0002 (5)0.0015 (5)
C50.0168 (7)0.0149 (6)0.0187 (6)0.0012 (5)−0.0017 (5)−0.0015 (5)
C60.0188 (7)0.0209 (7)0.0196 (6)−0.0007 (5)0.0013 (5)0.0015 (5)
C70.0221 (7)0.0225 (7)0.0186 (6)0.0005 (5)−0.0020 (5)0.0007 (5)
C80.0185 (7)0.0164 (6)0.0160 (6)0.0012 (5)−0.0010 (5)−0.0028 (5)
C90.0203 (7)0.0201 (7)0.0200 (6)−0.0024 (5)0.0000 (5)0.0025 (5)
C100.0245 (7)0.0213 (7)0.0182 (6)0.0011 (5)−0.0036 (5)0.0020 (5)
C110.0170 (7)0.0227 (7)0.0197 (6)0.0018 (5)−0.0037 (5)−0.0036 (5)
C120.0185 (7)0.0210 (7)0.0196 (6)−0.0016 (5)0.0022 (5)−0.0010 (5)
C130.0195 (7)0.0191 (7)0.0169 (6)0.0008 (5)−0.0004 (5)0.0010 (5)

Geometric parameters (Å, °)

N1—C11.2784 (19)C6—H60.9500
N1—N1i1.410 (2)C7—H70.9500
C1—C21.4592 (18)C8—C131.3989 (18)
C1—H10.9500C8—C91.4012 (18)
C2—C31.3927 (18)C9—C101.3858 (19)
C2—C71.4006 (19)C9—H90.9500
C3—C41.3874 (18)C10—C111.3863 (19)
C3—H30.9500C10—H100.9500
C4—C51.3969 (19)C11—C121.3888 (19)
C4—H40.9500C11—H110.9500
C5—C61.4073 (18)C12—C131.3870 (18)
C5—C81.4873 (17)C12—H120.9500
C6—C71.3784 (18)C13—H130.9500
C1—N1—N1i111.73 (15)C6—C7—H7119.7
N1—C1—C2122.17 (13)C2—C7—H7119.7
N1—C1—H1118.9C13—C8—C9117.44 (12)
C2—C1—H1118.9C13—C8—C5121.38 (11)
C3—C2—C7118.38 (12)C9—C8—C5121.17 (12)
C3—C2—C1119.45 (13)C10—C9—C8121.38 (12)
C7—C2—C1122.14 (12)C10—C9—H9119.3
C4—C3—C2121.03 (12)C8—C9—H9119.3
C4—C3—H3119.5C9—C10—C11120.34 (12)
C2—C3—H3119.5C9—C10—H10119.8
C3—C4—C5121.01 (12)C11—C10—H10119.8
C3—C4—H4119.5C10—C11—C12119.17 (12)
C5—C4—H4119.5C10—C11—H11120.4
C4—C5—C6117.55 (12)C12—C11—H11120.4
C4—C5—C8121.34 (11)C13—C12—C11120.49 (13)
C6—C5—C8121.11 (12)C13—C12—H12119.8
C7—C6—C5121.48 (12)C11—C12—H12119.8
C7—C6—H6119.3C12—C13—C8121.16 (12)
C5—C6—H6119.3C12—C13—H13119.4
C6—C7—C2120.53 (12)C8—C13—H13119.4
N1i—N1—C1—C2−178.70 (14)C4—C5—C8—C13161.70 (13)
N1—C1—C2—C3175.14 (14)C6—C5—C8—C13−19.36 (19)
N1—C1—C2—C7−2.6 (2)C4—C5—C8—C9−19.07 (19)
C7—C2—C3—C41.2 (2)C6—C5—C8—C9159.86 (13)
C1—C2—C3—C4−176.66 (13)C13—C8—C9—C100.99 (19)
C2—C3—C4—C50.1 (2)C5—C8—C9—C10−178.27 (12)
C3—C4—C5—C6−0.8 (2)C8—C9—C10—C110.1 (2)
C3—C4—C5—C8178.21 (13)C9—C10—C11—C12−0.9 (2)
C4—C5—C6—C70.1 (2)C10—C11—C12—C130.7 (2)
C8—C5—C6—C7−178.86 (12)C11—C12—C13—C80.5 (2)
C5—C6—C7—C21.2 (2)C9—C8—C13—C12−1.26 (19)
C3—C2—C7—C6−1.8 (2)C5—C8—C13—C12177.99 (12)
C1—C2—C7—C6175.96 (13)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2856).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremlyn, R. J., Swinburne, F. J., Graham, S., Calvaleiro, J. A. S., Domingues, F. J. & Dias, M. (1991). Phosphorus Sulfur Silicon Rel. Elem.60, 57–65.
  • Giurg, M. & Mlochowski, J. (1999). Synth. Commun.29, 4307–4313.
  • Kantlehner, W., Haug, E., Scherr, O., Stoyanov, E. V., Mezger, J. & Ziegler, G. (2004). Z. Naturforsch. Teil B, 59, 357–365.
  • Malkes, L. Ya. & Timchenko, A. I. (1961). Zh. Obshch. Khim.31, 560–562.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2008). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography