PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1616–m1617.
Published online 2008 November 26. doi:  10.1107/S1600536808038919
PMCID: PMC2959870

catena-Poly[[[diaqua­bis(2-methyl-6-oxo-1,6-dihydro-3,4′-bipyridine-5-carbo­nitrile)copper(II)]-μ-sulfato] tetra­hydrate]

Abstract

In the title polymer, {[Cu(SO4)(C12H9N3O)2(H2O)2]·4H2O}n, both the metal center and the sulfate anion are located on a twofold axis. The CuII ion is coordinated by two pyridyl N atoms from two symmetry-related organic ligands, two O atoms from two symmetry-related water mol­ecules, and two O atoms from two symmetry-related sulfate anions, resulting in a distorted octa­hedral geometry. The sulfate anions act as μ2-bridges and connect metal ions, forming a one-dimensional chain along the b axis. The three-dimensional crystal structure is established through inter­molecular N—H(...)O and O—H(...)O hydrogen bonds involving the organic ligands, sulfate anions, coordinated and uncoordinated water mol­ecules, and through π–π inter­acting 2-pyridone rings, with centroid–centroid separations of ca 3.96 Å and tilt angles of ca 2.62°.

Related literature

For background on metal-organic frameworks using sulfate ions as bridging ligands, see: Carlucci et al. (2003 [triangle]); Niu et al. (2008 [triangle]); Xu et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1616-scheme1.jpg

Experimental

Crystal data

  • [Cu(SO4)(C12H9N3O)2(H2O)2]·4H2O
  • M r = 690.14
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1616-efi5.jpg
  • a = 21.672 (3) Å
  • b = 6.8533 (8) Å
  • c = 19.860 (3) Å
  • V = 2949.8 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.88 mm−1
  • T = 291 (2) K
  • 0.32 × 0.23 × 0.22 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Siemens, 1996 [triangle]) T min = 0.764, T max = 0.828
  • 14282 measured reflections
  • 2751 independent reflections
  • 2195 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.091
  • S = 1.03
  • 2751 reflections
  • 201 parameters
  • H-atom parameters constrained
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2005 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808038919/bh2204sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038919/bh2204Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge financial support from the Natural Science Foundation of Henan Province (2008B150008) and the Science and Technology Key Task of Henan Province (0624040011).

supplementary crystallographic information

Comment

The coordinating modes of sulfate anions can be µ2, µ3, and µ4 bridges that have been used to construct metal-organic frameworks (Carlucci, et al., 2003; Xu, et al., 2003; Niu, et al., 2008).

In the title compound, (I), the central copper ion is coordinated by two N atoms from two symmetry-related organic ligands [N1, N1i; symmetry code: (i) -x + 3/2, -y + 3/2, z], two O atoms from two symmetry-related sulfate anions (O2, O2i), and two symmetry-related water O atoms (O4, O4i), forming a slightly distorted octahedral coordination environment (Fig. 1). The trans bond angles around metal centers are in the range 174.24 (9)–176.94 (8)°, close to 180 °, and the cis bond angles are in the range 86.58 (6)–93.50 (11) °, close to the right angle (Table 1).

Sulfate anions in the title compound act as µ2-bridging ligands to connect copper ions together, forming a one-dimensional chain along b axis. The separation of two neighbouring copper atoms in one chain is about 6.85 Å. The organic molecules, 1,6-dihydro-2-methyl-6-oxo-(3,4'-bipyridine)-5-carbonitrile, act as terminal ligands, being coordinated to the copper atoms in chains only through pyridyl N atoms, with the other N and O atoms remaining uncoordinated (Fig. 2). The S1 atom of the sulfate anion is located on a special position of space group Pccn, bonding four symmetry-related oxygen atoms [O2, O2ii, O3, O3ii; symmetry code: (ii) -x + 3/2, -y + 1/2, z]

There are hydrogen bonds involving organic ligands, sulfate anions, coordinated water molecules, and solvent water molecules. All O atoms of water molecules can either act as donors or as acceptors. Uncoordinating N atoms of pyridone rings only act as donors and sulfate O atoms as acceptors. Neighbouring chains are connected together by these hydrogen bonds (Fig. 3). In addition to these intermolecular hydrogen bonds, there are weak π-π interactions between parallel pyridone rings from two neighbouring chains, with centroid to centroid distances of about 3.96 Å and dihedral angles of about 2.62°.

Experimental

A solution of CuSO4.5H2O (0.025 g, 0.1 mmol) in CH3OH (10 ml) was added to a solution of 1,6-dihydro-2-methyl-6-oxo-(3,4'-bipyridine)-5-carbonitrile (0.021 g, 0.1 mmol) in CH3OH (20 ml) under stirring. The mixture was filtered and the resulting solution allowed to evaporate slowly. About 40 days later, blue block single crystals suitable for X-ray analysis were obtained (yield: ca. 35%).

Refinement

H atoms of water molecules were first found in a difference map and refined freely, with Uiso(H) = 1.5Ueq(carrier O). The remaining H atoms were positioned geometrically and refined using a riding model [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms; N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N); C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms]. The final difference map had a highest peak at 0.62 Å from atom H6W and a deepest hole at 0.55 Å from atom Cu1, but were otherwise featureless.

Figures

Fig. 1.
A view of the CuII coordination environment in the polymeric structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. All H atoms and solvent water molecules are omitted for clarity. [Symmetry ...
Fig. 2.
A ball-stick diagram showing the one-dimensional chain. All water molecules and H atoms have been omitted for clarity.
Fig. 3.
A diagram showing the intermolecular hydrogen bonds indicated by dashed lines.

Crystal data

[Cu(SO4)(C12H9N3O)2(H2O)2]·4H2OF000 = 1428
Mr = 690.14Dx = 1.554 Mg m3
Orthorhombic, PccnMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 3682 reflections
a = 21.672 (3) Åθ = 2.3–25.8º
b = 6.8533 (8) ŵ = 0.88 mm1
c = 19.860 (3) ÅT = 291 (2) K
V = 2949.8 (6) Å3Block, blue
Z = 40.32 × 0.23 × 0.22 mm

Data collection

Siemens SMART CCD area-detector diffractometer2751 independent reflections
Radiation source: fine-focus sealed tube2195 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.034
T = 291(2) Kθmax = 25.5º
[var phi] and ω scansθmin = 2.3º
Absorption correction: multi-scan(SADABS; Siemens, 1996)h = −23→26
Tmin = 0.764, Tmax = 0.828k = −8→8
14282 measured reflectionsl = −24→24

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.091  w = 1/[σ2(Fo2) + (0.0412P)2 + 2.9734P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2751 reflectionsΔρmax = 0.43 e Å3
201 parametersΔρmin = −0.41 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.75000.75000.559997 (19)0.02153 (13)
S10.75000.25000.60744 (4)0.02089 (19)
O10.39746 (9)0.8422 (3)0.20721 (9)0.0447 (5)
O20.73015 (9)0.4141 (3)0.56593 (9)0.0336 (4)
O30.69854 (8)0.1865 (3)0.65199 (9)0.0321 (4)
O40.68578 (8)0.7952 (2)0.63128 (9)0.0291 (4)
H1W0.68860.90770.64530.044*
H2W0.69250.71250.66010.044*
O50.69067 (10)0.5382 (3)0.73479 (10)0.0464 (5)
H3W0.71710.53270.76540.070*
H4W0.68880.43320.71390.070*
O60.78398 (17)0.0151 (9)0.32780 (19)0.183 (3)
H5W0.77130.13160.33290.275*
H6W0.81450.01560.30230.275*
N10.68294 (9)0.7831 (3)0.49032 (10)0.0250 (5)
N20.42947 (9)0.8330 (3)0.31661 (10)0.0282 (5)
H2D0.39150.83170.32920.034*
N30.52884 (13)0.8349 (4)0.10367 (12)0.0514 (7)
C10.67866 (13)0.9364 (4)0.44882 (13)0.0357 (7)
H10.70901.03230.45090.043*
C20.63105 (12)0.9583 (4)0.40299 (14)0.0371 (7)
H20.63001.06650.37470.044*
C30.58505 (11)0.8190 (4)0.39931 (12)0.0268 (5)
C40.58919 (13)0.6623 (4)0.44327 (14)0.0392 (7)
H4A0.55900.56590.44300.047*
C50.63819 (12)0.6500 (4)0.48731 (14)0.0374 (7)
H50.64010.54370.51630.045*
C60.53443 (11)0.8312 (4)0.34882 (12)0.0260 (5)
C70.54932 (11)0.8372 (4)0.27966 (12)0.0265 (5)
H70.59060.84070.26700.032*
C80.50482 (11)0.8381 (4)0.23072 (11)0.0269 (5)
C90.44027 (11)0.8380 (4)0.24792 (12)0.0280 (6)
C100.47276 (11)0.8298 (4)0.36634 (12)0.0270 (5)
C110.44750 (13)0.8324 (5)0.43639 (13)0.0405 (7)
H11A0.42370.94900.44300.061*
H11B0.48090.82950.46810.061*
H11C0.42160.72040.44310.061*
C120.51933 (12)0.8364 (4)0.16012 (13)0.0318 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0154 (2)0.0276 (2)0.0216 (2)−0.00008 (18)0.0000.000
S10.0153 (4)0.0200 (4)0.0273 (4)0.0008 (4)0.0000.000
O10.0265 (10)0.0688 (15)0.0387 (10)0.0036 (10)−0.0118 (9)−0.0038 (10)
O20.0356 (10)0.0244 (10)0.0408 (10)−0.0002 (8)−0.0124 (8)0.0060 (8)
O30.0225 (9)0.0322 (10)0.0417 (10)−0.0012 (8)0.0090 (8)−0.0015 (8)
O40.0268 (10)0.0271 (9)0.0335 (9)−0.0005 (7)0.0046 (8)0.0011 (7)
O50.0499 (13)0.0423 (12)0.0469 (12)0.0064 (10)0.0111 (10)−0.0005 (9)
O60.073 (2)0.360 (8)0.116 (3)−0.085 (4)−0.016 (2)0.094 (4)
N10.0171 (10)0.0333 (12)0.0245 (10)−0.0016 (9)−0.0005 (8)0.0027 (9)
N20.0143 (10)0.0381 (12)0.0323 (11)0.0005 (10)0.0005 (8)−0.0017 (10)
N30.0542 (17)0.0684 (19)0.0316 (14)0.0124 (15)0.0024 (12)0.0037 (13)
C10.0284 (15)0.0395 (16)0.0393 (15)−0.0127 (13)−0.0094 (12)0.0105 (12)
C20.0317 (15)0.0414 (16)0.0382 (15)−0.0090 (13)−0.0098 (12)0.0167 (12)
C30.0186 (12)0.0360 (14)0.0260 (12)0.0003 (11)−0.0011 (10)0.0009 (11)
C40.0291 (15)0.0370 (15)0.0516 (17)−0.0134 (13)−0.0144 (13)0.0133 (14)
C50.0294 (15)0.0379 (16)0.0451 (15)−0.0084 (13)−0.0117 (12)0.0156 (13)
C60.0208 (13)0.0299 (13)0.0274 (12)−0.0020 (11)−0.0042 (10)0.0029 (11)
C70.0172 (12)0.0298 (13)0.0325 (13)0.0002 (11)−0.0013 (10)0.0044 (11)
C80.0252 (13)0.0289 (13)0.0265 (12)0.0016 (11)0.0000 (10)0.0018 (10)
C90.0229 (13)0.0302 (14)0.0309 (13)0.0004 (11)−0.0040 (11)−0.0013 (11)
C100.0220 (13)0.0307 (13)0.0284 (12)−0.0008 (11)−0.0019 (10)0.0005 (11)
C110.0299 (15)0.0608 (19)0.0309 (14)−0.0027 (15)0.0027 (11)−0.0016 (14)
C120.0278 (14)0.0343 (15)0.0333 (15)0.0037 (12)−0.0023 (11)0.0031 (12)

Geometric parameters (Å, °)

Cu1—O4i2.0093 (17)N2—H2D0.8600
Cu1—O42.0093 (17)N3—C121.140 (3)
Cu1—N12.0197 (19)C1—C21.384 (4)
Cu1—N1i2.0197 (19)C1—H10.9300
Cu1—O22.3450 (18)C2—C31.382 (4)
Cu1—O2i2.3450 (18)C2—H20.9300
S1—O21.4592 (17)C3—C41.387 (4)
S1—O2ii1.4592 (17)C3—C61.489 (3)
S1—O3ii1.4885 (17)C4—C51.378 (4)
S1—O31.4885 (17)C4—H4A0.9300
O1—C91.231 (3)C5—H50.9300
O4—H1W0.8217C6—C101.381 (3)
O4—H2W0.8188C6—C71.412 (3)
O5—H3W0.8349C7—C81.369 (3)
O5—H4W0.8320C7—H70.9300
O6—H5W0.8509C8—C121.437 (4)
O6—H6W0.8326C8—C91.440 (3)
N1—C51.333 (3)C10—C111.495 (3)
N1—C11.339 (3)C11—H11A0.9600
N2—C101.363 (3)C11—H11B0.9600
N2—C91.385 (3)C11—H11C0.9600
O4i—Cu1—O490.42 (10)C2—C1—H1118.6
O4i—Cu1—N1176.94 (7)C3—C2—C1119.9 (2)
O4—Cu1—N188.10 (8)C3—C2—H2120.1
O4i—Cu1—N1i88.10 (8)C1—C2—H2120.1
O4—Cu1—N1i176.94 (8)C2—C3—C4117.0 (2)
N1—Cu1—N1i93.50 (11)C2—C3—C6121.9 (2)
O4i—Cu1—O286.57 (6)C4—C3—C6121.0 (2)
O4—Cu1—O289.37 (7)C5—C4—C3119.8 (3)
N1—Cu1—O290.73 (7)C5—C4—H4A120.1
N1i—Cu1—O293.21 (8)C3—C4—H4A120.1
O4i—Cu1—O2i89.37 (7)N1—C5—C4123.2 (2)
O4—Cu1—O2i86.58 (6)N1—C5—H5118.4
N1—Cu1—O2i93.21 (8)C4—C5—H5118.4
N1i—Cu1—O2i90.73 (7)C10—C6—C7117.8 (2)
O2—Cu1—O2i174.24 (9)C10—C6—C3122.9 (2)
O2—S1—O2ii111.21 (15)C7—C6—C3119.2 (2)
O2—S1—O3ii109.36 (10)C8—C7—C6122.0 (2)
O2ii—S1—O3ii109.88 (10)C8—C7—H7119.0
O2—S1—O3109.88 (10)C6—C7—H7119.0
O2ii—S1—O3109.37 (10)C7—C8—C12122.6 (2)
O3ii—S1—O3107.06 (15)C7—C8—C9121.1 (2)
S1—O2—Cu1136.96 (10)C12—C8—C9116.4 (2)
Cu1—O4—H1W109.4O1—C9—N2121.3 (2)
Cu1—O4—H2W105.3O1—C9—C8125.2 (2)
H1W—O4—H2W113.6N2—C9—C8113.5 (2)
H3W—O5—H4W110.9N2—C10—C6118.9 (2)
H5W—O6—H6W108.9N2—C10—C11115.0 (2)
C5—N1—C1117.3 (2)C6—C10—C11126.1 (2)
C5—N1—Cu1118.51 (17)C10—C11—H11A109.5
C1—N1—Cu1124.06 (17)C10—C11—H11B109.5
C10—N2—C9126.7 (2)H11A—C11—H11B109.5
C10—N2—H2D116.6C10—C11—H11C109.5
C9—N2—H2D116.6H11A—C11—H11C109.5
N1—C1—C2122.8 (2)H11B—C11—H11C109.5
N1—C1—H1118.6N3—C12—C8177.8 (3)
O2ii—S1—O2—Cu1−130.08 (19)Cu1—N1—C5—C4177.7 (2)
O3ii—S1—O2—Cu1−8.6 (2)C3—C4—C5—N10.1 (5)
O3—S1—O2—Cu1108.69 (16)C2—C3—C6—C10−124.4 (3)
O4i—Cu1—O2—S16.07 (17)C4—C3—C6—C1058.0 (4)
O4—Cu1—O2—S1−84.39 (17)C2—C3—C6—C758.1 (4)
N1—Cu1—O2—S1−172.48 (17)C4—C3—C6—C7−119.5 (3)
N1i—Cu1—O2—S193.97 (17)C10—C6—C7—C8−1.2 (4)
O4—Cu1—N1—C5−66.4 (2)C3—C6—C7—C8176.5 (3)
N1i—Cu1—N1—C5116.2 (2)C6—C7—C8—C12−177.5 (2)
O2—Cu1—N1—C522.9 (2)C6—C7—C8—C91.6 (4)
O2i—Cu1—N1—C5−152.9 (2)C10—N2—C9—O1−179.4 (3)
O4—Cu1—N1—C1110.0 (2)C10—N2—C9—C80.5 (4)
N1i—Cu1—N1—C1−67.4 (2)C7—C8—C9—O1178.7 (3)
O2—Cu1—N1—C1−160.6 (2)C12—C8—C9—O1−2.2 (4)
O2i—Cu1—N1—C123.5 (2)C7—C8—C9—N2−1.2 (4)
C5—N1—C1—C2−1.4 (4)C12—C8—C9—N2177.9 (2)
Cu1—N1—C1—C2−177.9 (2)C9—N2—C10—C6−0.2 (4)
N1—C1—C2—C30.6 (5)C9—N2—C10—C11177.7 (3)
C1—C2—C3—C40.5 (4)C7—C6—C10—N20.4 (4)
C1—C2—C3—C6−177.2 (3)C3—C6—C10—N2−177.2 (2)
C2—C3—C4—C5−0.8 (4)C7—C6—C10—C11−177.2 (3)
C6—C3—C4—C5176.9 (3)C3—C6—C10—C115.2 (5)
C1—N1—C5—C41.0 (4)

Symmetry codes: (i) −x+3/2, −y+3/2, z; (ii) −x+3/2, −y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2D···O3iii0.861.992.847 (3)173
O4—H2W···O50.821.902.709 (3)167
O5—H4W···O30.832.102.922 (3)170
O4—H1W···O3iv0.821.932.727 (2)164
O5—H3W···O6v0.831.942.763 (4)171
O6—H6W···O1vi0.832.052.737 (4)139

Symmetry codes: (iii) −x+1, −y+1, −z+1; (iv) x, y+1, z; (v) x, −y+1/2, z+1/2; (vi) x+1/2, −y+1, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2204).

References

  • Brandenburg, K. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Carlucci, L., Ciani, G., Proserpio, D. M. & Rizzato, S. (2003). CrystEngComm, 5, 190–199.
  • Niu, C.-Y., Wu, B.-L., Zheng, X.-F., Zhang, H.-Y., Hou, H.-W., Niu, Y.-Y. & Li, Z.-J. (2008). Cryst. Growth Des.8, 1566–1574.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART, SAINT and SADABS . Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Xu, Y., Bi, W.-H., Li, X., Sun, D.-F., Cao, R. & Hong, M.-C. (2003). Inorg. Chem. Commun.6, 495–497.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography