PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2394.
Published online 2008 November 20. doi:  10.1107/S1600536808038269
PMCID: PMC2959868

2,3-Difluoro-N-(2-pyrid­yl)benzamide

Abstract

The title compound, C12H8F2N2O, crystallizes with two independent mol­ecules in the asymmetric unit. The independent mol­ecules differ slightly in conformation; the dihedral angles between the benzene and pyridine rings are 51.58 (5) and 49.97 (4)°. In the crystal structure, mol­ecules aggregate via N—H(...)Npyridine inter­actions as hydrogen-bonded dimers with the structural motif R 2 2(8), and these dimers are linked via C—H(...)O inter­actions to form a supra­molecular chain.

Related literature

For background information, see: Chopra & Row (2008 [triangle]); Donnelly et al. (2008 [triangle]); Gelbrich et al. (2007 [triangle]); McMahon et al. (2008 [triangle]). For a related structure, see: Forbes et al. (2001 [triangle]). For the Cambridge Structural Database, see: Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2394-scheme1.jpg

Experimental

Crystal data

  • C12H8F2N2O
  • M r = 234.20
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2394-efi1.jpg
  • a = 11.8515 (4) Å
  • b = 9.0554 (2) Å
  • c = 20.1075 (7) Å
  • β = 100.2620 (15)°
  • V = 2123.42 (11) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 150 (1) K
  • 0.26 × 0.20 × 0.15 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1995 [triangle]) T min = 0.875, T max = 0.981
  • 5113 measured reflections
  • 4803 independent reflections
  • 3170 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.128
  • S = 1.04
  • 4803 reflections
  • 316 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: KappaCCD Server Software (Nonius, 1997 [triangle]); cell refinement: DENZOSMN (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZOSMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) and SORTX (McArdle, 1995 [triangle]); mol­ecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97 and PREP8 (Ferguson, 1998 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808038269/tk2329sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038269/tk2329Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

JFG thanks Dublin City University for the grants in aid of undergraduate research. Thanks especially to Mr Damien McGuirk for providing excellent technical assistance in the undergraduate research laboratories.

supplementary crystallographic information

Comment

Our group is completing a structural systematic study of fluoro-N'-(pyridyl)benzamide isomers (Donnelly et al., 2008) and are adding to our research with the analogous difluoro-N-(pyridyl)benzamide series (McMahon et al., 2008) (Scheme 1). A total of 18 isomers are possible via amide formation and resulting through condensation of the 2,3-, 2,4-, 2,5-, 2,6-, 3,4-, 3,5-difluorobenzoyl chlorides with the 4-/3-/2-aminopyridines. The 2,3-, 2,4- and 2,5-difluoro-N-(4-pyridyl)benzamides have already been reported by us (McMahon et al., 2008). Systematic structural analyses have recently been reported for related fluoro derivatives (Chopra & Row, 2008) and isomeric series (Gelbrich et al., 2007).

There is a dearth of structural information in the literature on all six possible difluorobenzene derivatives F2C6H3Z (Z = remainder of molecule) from analysis of structural data in the Cambridge Structural Database (Allen 2002; v5.29, Nov 2007 issue + 2 updates). In this structural report the structure of 2,3-difluoro-N-(2-pyridyl)benzamide (I), Fig. 1, is described.

Compound (I) crystallizes with two molecules, A and B (which differ slightly in conformation) in the asymmetric unit: the C6/C5N internal angles are 51.58 (5)° and 49.97 (4)°, respectively, see overlay diagram, Fig. 2. Molecules aggregate via N—H···N interactions as hydrogen bonded dimers with structural motif R22(8); see Table 1 for geometric parameters. The [N1A/C21A/N22A/H1A] and [N1B/C21B/N22B/H1B] interplanar angle is 36.2 (3)° and deviates considerably from co-planarity therefore highlighting a degree of twist between the two interacting molecules. Hydrogen bonded dimers are linked into a supramolecular chain via C—H···O=C intermolecular interactions, Table 1 and Fig. 3.

An analysis of the Cambridge Structural Database reveals a related structure pentafluoro-N-(2-pyridyl)benzamide (II) [CSD code IDALAA] (Forbes et al., 2001) where molecules also form hydrogen bonded dimers in space group P1 (No. 2) with Z'=2. The N···N intermolecular distances in (II) are 2.9568 (14) and 3.0734 (15) Å.

Experimental

Compound (I) was synthesized via standard condensation procedures and similar to the related syntheses reported previously (Donnelly et al., 2008; McMahon et al., 2008).

Typical organic workup and washing gave the product (I) in modest yield of 15–20%. Crystals suitable for diffraction were grown from CHCl3 solution as colourless blocks over a period of 1–2 weeks. The compounds gave clean 1H and 13C NMR spectra in δ6-DMSO and infrared spectra (in CHCl3 solution, and as KBr disks).

For (I), m.p. 348–352 K (uncorrected). IR (νC=O cm-1): 1644(s), (CHCl3); 1695(s) (KBr). 1H NMR (400 MHz, DMSO): δ 11.02 (s, 1H, N—H), 8.38 (d, 1H), 8.18 (d, 1H), 7.87 (t, 1H), 7.61 (q, 1H), 7.50 (t, 1H), 7.34 (q, 1H), 7.19 (t, 1H).

Refinement

H atoms attached to C atoms were treated as riding with C—H = 0.95 Å, and with Uiso(H) = 1.2Ueq(C). N-bound H atoms were refined freely with isotropic displacement parameters to bond lengths of 0.894 (19) (for N1—H1A) and 0.90 (2) Å (for N2—H2A).

Figures

Fig. 1.
A view of the hydrogen bonded dimeric unit in (I) with the atomic numbering scheme for the two independent molecules A and B. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
An overlay of the non-H atoms in molecules A and B in (I).
Fig. 3.
A view of the primary interactions in the crystal structure of (I) with H atoms not involved in hydrogen bonding removed for clarity. Molecules in the hydrogen bonded dimer with suffixes A and B are linked to symmetry related dimers at positions * and ...

Crystal data

C12H8F2N2OF000 = 960
Mr = 234.20Dx = 1.465 Mg m3
Monoclinic, P21/nMelting point: 350 K
Hall symbol: -P 2ynMo Kα radiation λ = 0.71073 Å
a = 11.8515 (4) ÅCell parameters from 19375 reflections
b = 9.0554 (2) Åθ = 2.6–27.5º
c = 20.1075 (7) ŵ = 0.12 mm1
β = 100.2620 (15)ºT = 150 (1) K
V = 2123.42 (11) Å3Block, colorless
Z = 80.26 × 0.20 × 0.15 mm

Data collection

Nonius KappaCCD diffractometer4803 independent reflections
Radiation source: fine-focus sealed X-ray tube3170 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.045
T = 150(1) Kθmax = 27.4º
[var phi], ω scans with κ offsetsθmin = 2.9º
Absorption correction: multi-scan(SORTAV; Blessing, 1995)h = −15→15
Tmin = 0.875, Tmax = 0.981k = −11→11
5113 measured reflectionsl = −25→26

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.046  w = 1/[σ2(Fo2) + (0.0702P)2 + 0.0466P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.128(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.22 e Å3
4803 reflectionsΔρmin = −0.23 e Å3
316 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0082 (18)
Secondary atom site location: difference Fourier map

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
F12A0.56446 (8)0.44877 (11)0.07324 (5)0.0425 (3)
F13A0.78621 (9)0.51655 (11)0.10099 (5)0.0488 (3)
O1A0.42720 (10)0.20016 (14)−0.08253 (6)0.0395 (3)
C1A0.47361 (14)0.22193 (17)−0.02420 (8)0.0305 (4)
N1A0.42289 (12)0.20469 (17)0.03102 (7)0.0335 (3)
C11A0.59705 (14)0.26753 (17)−0.00730 (8)0.0290 (4)
C12A0.63682 (14)0.37604 (18)0.03976 (8)0.0321 (4)
C13A0.75099 (15)0.41319 (18)0.05327 (9)0.0355 (4)
C14A0.82865 (15)0.3464 (2)0.02003 (9)0.0393 (4)
C15A0.79011 (15)0.2389 (2)−0.02769 (9)0.0381 (4)
C16A0.67583 (15)0.20015 (18)−0.04120 (8)0.0325 (4)
C21A0.30662 (14)0.18055 (17)0.03269 (8)0.0299 (4)
N22A0.28635 (11)0.16084 (15)0.09545 (7)0.0314 (3)
C23A0.17744 (14)0.13679 (18)0.10248 (9)0.0346 (4)
C24A0.08688 (15)0.13592 (19)0.04919 (9)0.0377 (4)
C25A0.10971 (15)0.1603 (2)−0.01501 (10)0.0410 (4)
C26A0.22090 (15)0.18089 (18)−0.02435 (9)0.0350 (4)
F12B0.29582 (9)0.49048 (12)0.14007 (5)0.0443 (3)
F13B0.06988 (10)0.53646 (13)0.11073 (6)0.0554 (3)
O1B0.45792 (11)0.38227 (17)0.31766 (6)0.0555 (4)
C1B0.40611 (15)0.34390 (19)0.26233 (8)0.0354 (4)
N1B0.45292 (12)0.27166 (16)0.21504 (7)0.0325 (3)
C11B0.27918 (14)0.37060 (18)0.24278 (8)0.0328 (4)
C12B0.22995 (15)0.44225 (18)0.18387 (8)0.0345 (4)
C13B0.11332 (16)0.46598 (19)0.16891 (9)0.0386 (4)
C14B0.04218 (16)0.4186 (2)0.21145 (10)0.0421 (4)
C15B0.08962 (16)0.3480 (2)0.27087 (10)0.0445 (5)
C16B0.20703 (16)0.3250 (2)0.28624 (9)0.0395 (4)
C21B0.56780 (14)0.22849 (17)0.21788 (8)0.0303 (4)
N22B0.58589 (12)0.16736 (16)0.16024 (7)0.0344 (3)
C23B0.69244 (15)0.1202 (2)0.15795 (9)0.0384 (4)
C24B0.78295 (15)0.1326 (2)0.21110 (9)0.0389 (4)
C25B0.76225 (16)0.1964 (2)0.27011 (9)0.0427 (5)
C26B0.65348 (15)0.2447 (2)0.27418 (9)0.0390 (4)
H1A0.4709 (16)0.1978 (19)0.0706 (9)0.035 (5)*
H14A0.90740.37320.02950.047*
H15A0.84280.1916−0.05120.046*
H16A0.65050.1264−0.07410.039*
H23A0.16210.11950.14660.042*
H24A0.01080.11910.05630.045*
H25A0.04860.1628−0.05270.049*
H26A0.23840.1949−0.06820.042*
H1B0.4059 (17)0.240 (2)0.1778 (10)0.043 (5)*
H14B−0.03830.43400.20030.051*
H15B0.04180.31530.30110.053*
H16B0.23880.27700.32730.047*
H23B0.70630.07580.11740.046*
H24B0.85730.09830.20730.047*
H25B0.82270.20690.30770.051*
H26B0.63750.28810.31450.047*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
F12A0.0384 (6)0.0438 (6)0.0455 (6)0.0052 (4)0.0084 (5)−0.0136 (5)
F13A0.0455 (7)0.0452 (6)0.0519 (7)−0.0065 (5)−0.0018 (5)−0.0134 (5)
O1A0.0386 (7)0.0519 (8)0.0264 (7)−0.0028 (5)0.0015 (5)−0.0038 (5)
C1A0.0317 (9)0.0328 (9)0.0258 (9)0.0030 (7)0.0020 (7)−0.0014 (7)
N1A0.0241 (8)0.0508 (9)0.0244 (8)−0.0028 (6)0.0008 (6)−0.0018 (6)
C11A0.0311 (9)0.0313 (8)0.0243 (8)0.0017 (6)0.0040 (7)0.0021 (7)
C12A0.0321 (9)0.0333 (9)0.0315 (9)0.0058 (7)0.0073 (7)−0.0006 (7)
C13A0.0371 (10)0.0326 (9)0.0342 (9)−0.0036 (7)−0.0008 (8)−0.0017 (8)
C14A0.0286 (9)0.0461 (10)0.0428 (11)−0.0013 (8)0.0055 (8)0.0042 (9)
C15A0.0334 (10)0.0468 (10)0.0352 (10)0.0067 (8)0.0093 (8)0.0025 (8)
C16A0.0373 (10)0.0337 (9)0.0266 (9)0.0030 (7)0.0056 (7)0.0006 (7)
C21A0.0286 (9)0.0308 (8)0.0296 (9)0.0011 (6)0.0035 (7)−0.0006 (7)
N22A0.0286 (8)0.0353 (8)0.0300 (8)−0.0001 (6)0.0047 (6)−0.0010 (6)
C23A0.0357 (10)0.0339 (9)0.0354 (10)−0.0019 (7)0.0095 (8)−0.0022 (7)
C24A0.0296 (9)0.0401 (10)0.0426 (11)−0.0049 (7)0.0041 (8)−0.0015 (8)
C25A0.0322 (10)0.0476 (11)0.0389 (10)−0.0033 (8)−0.0048 (8)−0.0009 (8)
C26A0.0320 (10)0.0417 (10)0.0292 (9)−0.0011 (7)−0.0003 (7)0.0016 (8)
F12B0.0424 (6)0.0497 (6)0.0426 (6)0.0017 (5)0.0121 (5)0.0126 (5)
F13B0.0462 (7)0.0643 (7)0.0531 (7)0.0097 (5)0.0014 (5)0.0206 (6)
O1B0.0459 (8)0.0824 (10)0.0345 (8)0.0130 (7)−0.0024 (6)−0.0221 (7)
C1B0.0376 (10)0.0408 (10)0.0272 (9)0.0025 (7)0.0041 (8)−0.0026 (8)
N1B0.0296 (8)0.0422 (8)0.0243 (7)0.0018 (6)0.0008 (6)−0.0035 (6)
C11B0.0360 (10)0.0340 (9)0.0286 (9)0.0021 (7)0.0060 (7)−0.0057 (7)
C12B0.0374 (10)0.0356 (9)0.0320 (9)−0.0011 (7)0.0103 (8)−0.0003 (8)
C13B0.0389 (11)0.0376 (10)0.0377 (10)0.0043 (8)0.0022 (8)0.0030 (8)
C14B0.0336 (10)0.0465 (10)0.0459 (11)0.0018 (8)0.0063 (8)−0.0054 (9)
C15B0.0417 (11)0.0544 (11)0.0402 (11)−0.0027 (9)0.0148 (9)−0.0056 (9)
C16B0.0420 (11)0.0489 (11)0.0284 (9)0.0032 (8)0.0084 (8)−0.0017 (8)
C21B0.0330 (9)0.0310 (8)0.0266 (9)0.0001 (6)0.0043 (7)0.0011 (7)
N22B0.0331 (8)0.0393 (8)0.0292 (8)0.0037 (6)0.0015 (6)−0.0024 (6)
C23B0.0364 (10)0.0424 (10)0.0355 (10)0.0076 (8)0.0045 (8)−0.0038 (8)
C24B0.0303 (10)0.0458 (10)0.0387 (10)0.0035 (7)0.0014 (8)0.0024 (8)
C25B0.0350 (10)0.0552 (12)0.0342 (10)−0.0007 (8)−0.0037 (8)−0.0006 (9)
C26B0.0367 (10)0.0504 (11)0.0280 (9)0.0002 (8)0.0006 (8)−0.0023 (8)

Geometric parameters (Å, °)

F12A—C12A1.3520 (18)C12B—C13B1.378 (2)
F13A—C13A1.3522 (19)C13B—C14B1.373 (3)
O1A—C1A1.2195 (19)C14B—C15B1.383 (3)
C1A—N1A1.363 (2)C15B—C16B1.386 (3)
C1A—C11A1.500 (2)C21B—N22B1.336 (2)
N1A—C21A1.402 (2)C21B—C26B1.387 (2)
C11A—C12A1.387 (2)N22B—C23B1.342 (2)
C11A—C16A1.391 (2)C23B—C24B1.377 (2)
C12A—C13A1.374 (2)C24B—C25B1.380 (3)
C13A—C14A1.371 (2)C25B—C26B1.377 (3)
C14A—C15A1.386 (3)N1A—H1A0.894 (19)
C15A—C16A1.378 (2)C14A—H14A0.9500
C21A—N22A1.338 (2)C15A—H15A0.9500
C21A—C26A1.390 (2)C16A—H16A0.9500
N22A—C23A1.341 (2)C23A—H23A0.9500
C23A—C24A1.375 (2)C24A—H24A0.9500
C24A—C25A1.383 (3)C25A—H25A0.9500
C25A—C26A1.377 (2)C26A—H26A0.9500
F12B—C12B1.3493 (19)N1B—H1B0.90 (2)
F13B—C13B1.351 (2)C14B—H14B0.9500
O1B—C1B1.221 (2)C15B—H15B0.9500
C1B—N1B1.352 (2)C16B—H16B0.9500
C1B—C11B1.505 (2)C23B—H23B0.9500
N1B—C21B1.408 (2)C24B—H24B0.9500
C11B—C12B1.385 (2)C25B—H25B0.9500
C11B—C16B1.390 (2)C26B—H26B0.9500
O1A—C1A—N1A125.19 (16)O1B—C1B—N1B125.13 (16)
O1A—C1A—C11A121.14 (15)O1B—C1B—C11B120.60 (15)
N1A—C1A—C11A113.64 (14)N1B—C1B—C11B114.22 (14)
C1A—N1A—C21A128.01 (14)C1B—N1B—C21B128.38 (14)
C1A—N1A—H1A115.5 (11)C1B—N1B—H1B118.2 (12)
C21A—N1A—H1A116.1 (11)C21B—N1B—H1B113.3 (12)
C12A—C11A—C16A117.95 (15)C12B—C11B—C16B117.68 (16)
C12A—C11A—C1A123.29 (15)C12B—C11B—C1B123.21 (15)
C16A—C11A—C1A118.75 (15)C16B—C11B—C1B119.09 (15)
F12A—C12A—C11A121.07 (15)F12B—C12B—C11B120.36 (15)
F12A—C12A—C13A118.17 (15)F12B—C12B—C13B118.78 (15)
C13A—C12A—C11A120.76 (15)C13B—C12B—C11B120.86 (16)
F13A—C13A—C12A118.59 (15)F13B—C13B—C12B118.38 (16)
F13A—C13A—C14A120.15 (16)F13B—C13B—C14B120.37 (17)
C14A—C13A—C12A121.25 (16)C14B—C13B—C12B121.25 (17)
C13A—C14A—C15A118.72 (17)C13B—C14B—C15B118.86 (17)
C16A—C15A—C14A120.42 (16)C14B—C15B—C16B119.97 (17)
C15A—C16A—C11A120.89 (16)C15B—C16B—C11B121.37 (17)
N22A—C21A—C26A123.43 (15)N22B—C21B—C26B123.00 (16)
N22A—C21A—N1A112.70 (14)N22B—C21B—N1B112.55 (14)
C26A—C21A—N1A123.84 (15)C26B—C21B—N1B124.44 (15)
C21A—N22A—C23A117.32 (14)C21B—N22B—C23B117.33 (14)
N22A—C23A—C24A123.44 (16)N22B—C23B—C24B123.73 (17)
C23A—C24A—C25A118.11 (16)C23B—C24B—C25B117.90 (17)
C26A—C25A—C24A120.02 (16)C26B—C25B—C24B119.71 (17)
C25A—C26A—C21A117.62 (16)C25B—C26B—C21B118.32 (16)
C13A—C14A—H14A120.6C13B—C14B—H14B120.6
C15A—C14A—H14A120.6C15B—C14B—H14B120.6
C16A—C15A—H15A119.8C14B—C15B—H15B120.0
C14A—C15A—H15A119.8C16B—C15B—H15B120.0
C15A—C16A—H16A119.6C15B—C16B—H16B119.3
C11A—C16A—H16A119.6C11B—C16B—H16B119.3
C23A—C24A—H24A120.9N22B—C23B—H23B118.1
C25A—C24A—H24A120.9C24B—C23B—H23B118.1
C26A—C25A—H25A120.0C23B—C24B—H24B121.0
C24A—C25A—H25A120.0C25B—C24B—H24B121.0
N22A—C23A—H23A118.3C26B—C25B—H25B120.1
C24A—C23A—H23A118.3C24B—C25B—H25B120.1
C25A—C26A—H26A121.2C25B—C26B—H26B120.8
C21A—C26A—H26A121.2C21B—C26B—H26B120.8
O1A—C1A—N1A—C21A−10.0 (3)O1B—C1B—N1B—C21B−1.4 (3)
C11A—C1A—N1A—C21A171.67 (15)C11B—C1B—N1B—C21B−179.18 (15)
O1A—C1A—C11A—C12A137.44 (17)O1B—C1B—C11B—C12B127.03 (19)
N1A—C1A—C11A—C12A−44.2 (2)N1B—C1B—C11B—C12B−55.1 (2)
O1A—C1A—C11A—C16A−41.3 (2)O1B—C1B—C11B—C16B−51.4 (2)
N1A—C1A—C11A—C16A137.08 (16)N1B—C1B—C11B—C16B126.52 (17)
C16A—C11A—C12A—F12A178.24 (14)C16B—C11B—C12B—F12B179.31 (15)
C1A—C11A—C12A—F12A−0.5 (2)C1B—C11B—C12B—F12B0.9 (2)
C16A—C11A—C12A—C13A−1.3 (2)C16B—C11B—C12B—C13B−0.5 (2)
C1A—C11A—C12A—C13A179.93 (16)C1B—C11B—C12B—C13B−178.94 (16)
F12A—C12A—C13A—F13A2.4 (2)F12B—C12B—C13B—F13B0.2 (2)
C11A—C12A—C13A—F13A−178.07 (15)C11B—C12B—C13B—F13B180.00 (15)
F12A—C12A—C13A—C14A−178.45 (15)F12B—C12B—C13B—C14B179.65 (16)
C11A—C12A—C13A—C14A1.1 (3)C11B—C12B—C13B—C14B−0.5 (3)
F13A—C13A—C14A—C15A178.79 (16)F13B—C13B—C14B—C15B−179.45 (16)
C12A—C13A—C14A—C15A−0.4 (3)C12B—C13B—C14B—C15B1.1 (3)
C13A—C14A—C15A—C16A−0.1 (3)C13B—C14B—C15B—C16B−0.6 (3)
C14A—C15A—C16A—C11A−0.1 (3)C14B—C15B—C16B—C11B−0.5 (3)
C12A—C11A—C16A—C15A0.8 (2)C12B—C11B—C16B—C15B1.0 (3)
C1A—C11A—C16A—C15A179.64 (15)C1B—C11B—C16B—C15B179.48 (16)
C1A—N1A—C21A—N22A176.76 (16)C1B—N1B—C21B—N22B−175.88 (16)
C1A—N1A—C21A—C26A−4.9 (3)C1B—N1B—C21B—C26B5.0 (3)
C26A—C21A—N22A—C23A1.7 (2)C26B—C21B—N22B—C23B0.1 (2)
N1A—C21A—N22A—C23A−179.97 (14)N1B—C21B—N22B—C23B−179.03 (15)
C21A—N22A—C23A—C24A−2.0 (2)C21B—N22B—C23B—C24B−0.5 (3)
N22A—C23A—C24A—C25A0.4 (3)N22B—C23B—C24B—C25B0.4 (3)
C23A—C24A—C25A—C26A1.6 (3)C23B—C24B—C25B—C26B0.2 (3)
C24A—C25A—C26A—C21A−1.9 (3)C24B—C25B—C26B—C21B−0.6 (3)
N22A—C21A—C26A—C25A0.2 (3)N22B—C21B—C26B—C25B0.5 (3)
N1A—C21A—C26A—C25A−177.96 (16)N1B—C21B—C26B—C25B179.45 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1A—H1A···N22B0.894 (19)2.076 (19)2.968 (2)175.9 (16)
N1B—H1B···N22A0.90 (2)2.10 (2)2.999 (2)175.4 (17)
C26A—H26A···O1A0.952.312.898 (2)120
C26B—H26B···O1B0.952.302.900 (2)120
C25B—H25B···O1Ai0.952.483.379 (2)159
C25A—H25A···O1Bii0.952.673.542 (2)153

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2329).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Chopra, D. & Row, T. N. G. (2008). CrystEngComm, 10, 54–67.
  • Donnelly, K., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o335–o340. [PubMed]
  • Ferguson, G. (1998). PREP8 University of Guelph, Canada.
  • Forbes, C. C., Beatty, A. M. & Smith, B. D. (2001). Org. Lett.3, 3595–3598. [PubMed]
  • Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [PubMed]
  • McArdle, P. (1995). J. Appl. Cryst.28, 65.
  • McMahon, J., Anderson, F. P., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o493–o497. [PubMed]
  • Nonius (1997). KappaCCD Server Software Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography