PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2465.
Published online 2008 November 29. doi:  10.1107/S1600536808039196
PMCID: PMC2959862

1-[2-(2,4-Dichloro­benz­yloxy)-2-phenyl­ethyl]-1H-1,2,4-triazole

Abstract

In the mol­ecule of the title compound, C17H15Cl2N3O, the triazole ring is oriented at dihedral angles of 9.24 (6) and 82.49 (6)°, respectively, with respect to the phenyl and dichloro­benzene rings. The dihedral angle between the dichloro­benzene and phenyl rings is 88.57 (5)°. An intra­molecular C—H(...)O contact results in the formation of a planar five-membered ring.

Related literature

For general backgroud, see: Paulvannan et al. (2001 [triangle]); Godefroi et al. (1969 [triangle]); Özel Güven et al. (2007a [triangle],b [triangle]); Wahbi et al. (1995 [triangle]). For related structures, see: Peeters et al. (1979 [triangle]); Freer et al. (1986 [triangle]); Özel Güven et al. (2008a [triangle],b [triangle],c [triangle],d [triangle],e [triangle],f [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2465-scheme1.jpg

Experimental

Crystal data

  • C17H15Cl2N3O
  • M r = 348.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2465-efi1.jpg
  • a = 10.5630 (3) Å
  • b = 13.7933 (5) Å
  • c = 11.4437 (4) Å
  • β = 101.840 (2)°
  • V = 1631.86 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.41 mm−1
  • T = 296 (2) K
  • 0.35 × 0.25 × 0.15 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.871, T max = 0.942
  • 17794 measured reflections
  • 4055 independent reflections
  • 3135 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.104
  • S = 1.04
  • 4055 reflections
  • 208 parameters
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808039196/su2082sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039196/su2082Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Zonguldak Karaelmas University Research Fund (Project No. 2008–13–02–06) for financial support.

supplementary crystallographic information

Comment

1,2,4-Triazoles are biologically interesting molecules and their chemistry is receiving considerable attention due to their antihypertensive, antifungal and antibacterial properties (Paulvannan et al., 2001). Some ether structures containing the 1H-imidazole ring, like miconazole, econazole and sulconazole, have been synthesized and developed for clinical use as antifungal agents (Godefroi et al., 1969). Also, antifungal activity of aromatic ethers possessing a 1H-1,2,4-triazole ring have been reported (Wahbi et al., 1995). However, similar ether structures possessing a 1H-benzimidazole ring have been reported to show antibacterial activity more than antifungal activity (Özel Güven et al., 2007a,b). The crystal structures of these ether derivatives, such as miconazole (Peeters et al., 1979) and econazole (Freer et al., 1986), have been reported. The crystal structures of 1H-benzimidazole ring containing ether derivatives (Özel Güven et al., 2008a,b,c,d) and also, 1H-1,2,4-triazole ring containing ether derivative have been reported recently (Özel Güven et al., 2008e). Here we report on the crystal structure of the 2,4-dichloro derivative of a 1H-1,2,4-triazole ring compound containing an ether structure.

In the molecule of the title compound (Fig. 1) the bond lengths and angles are generally within normal ranges. The planar triazole ring is oriented with respect to the phenyl and dichlorobenzene rings at dihedral angles of 9.24 (6)° and 82.49 (6)°, respectively. The dichlorobenzene ring is oriented with respect to the phenyl ring at a dihedral angle of 88.57 (5)°. The intramolecular C—H···O contact results in the formation of a planar five-membered ring (O1/H13/C11—C13), which is oriented with respect to dichlorobenzene ring at a dihedral angle of 0.65 (4)°, hence they are coplanar.

In the crystal structure of the title compound, the molecules stack along the c direction (Fig. 2). There is a weak intermolecular C—H···π contact between the methylene group and the dichlorobenzene ring [Table 1; where Cg3 is the centroid of the ring (C12-C17)].

Experimental

The title compound was synthesized by the reaction of 1-phenyl-2-(1H-1,2,4 -triazol-1-yl)ethanol (Özel Güven et al., 2008f) with NaH and the appropriate benzyl halide. To the solution of the alcohol (300 mg, 1.586 mmol) in DMF (4 ml) was added NaH (63 mg, 1.586 mmol) in small fractions. The appropriate benzyl halide (310 mg, 1.586 mmol) was added dropwise. The mixture was stirred at room temperature for 3 h, and excess hydride was decomposed with methyl alcohol (5 ml). After evaporation to dryness under reduced pressure, the crude residue was suspended with water and extracted with methylene chloride. The organic layer was dried over anhydrous sodium sulfate and then evaporated to dryness. The crude residue was purified by chromatography on a silica-gel column using chloroform as eluent. Crystals of the title compound, suitable for X-ray analysis, were obtained by recrystallization of the ether from 2-propanol (yield; 365 mg, 66%).

Refinement

H atoms were positioned geometrically and constrained to ride on their parent atoms: C—H = 0.93 - 0.98 Å with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compiund, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular C-H···O contact is shown as a dashed line.
Fig. 2.
The crystal packing of the title compound, viewed along the c axis. Hydrogen atoms have been omitted for clarity.

Crystal data

C17H15Cl2N3OF000 = 720
Mr = 348.22Dx = 1.417 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1196 reflections
a = 10.5630 (3) Åθ = 2.3–28.3º
b = 13.7933 (5) ŵ = 0.41 mm1
c = 11.4437 (4) ÅT = 296 (2) K
β = 101.840 (2)ºRod-shaped, colorless
V = 1631.86 (10) Å30.35 × 0.25 × 0.15 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer4055 independent reflections
Radiation source: fine-focus sealed tube3135 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.026
Detector resolution: 7.40 pixels mm-1θmax = 28.3º
T = 296(2) Kθmin = 2.3º
ω scansh = −14→14
Absorption correction: multi-scan(SADABS; Bruker, 2005)k = −18→18
Tmin = 0.871, Tmax = 0.942l = −15→14
17794 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.104  w = 1/[σ2(Fo2) + (0.0424P)2 + 0.5043P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4055 reflectionsΔρmax = 0.32 e Å3
208 parametersΔρmin = −0.24 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.52852 (6)0.29276 (4)−0.26180 (4)0.07651 (18)
Cl20.34215 (4)0.12684 (4)0.09114 (5)0.06649 (16)
O10.74240 (10)0.02400 (8)0.22002 (9)0.0471 (3)
N10.93446 (12)−0.11684 (10)0.21096 (11)0.0455 (3)
N20.90960 (15)−0.21005 (11)0.17678 (14)0.0566 (4)
N30.99426 (14)−0.12858 (12)0.04041 (13)0.0576 (4)
C10.94814 (17)−0.21219 (14)0.07456 (16)0.0558 (4)
H10.9437−0.26830.02880.067*
C20.98325 (16)−0.07037 (14)0.12863 (15)0.0541 (4)
H21.0065−0.00520.13290.065*
C30.90367 (16)−0.08020 (14)0.32066 (13)0.0508 (4)
H3A0.9575−0.02420.34720.061*
H3B0.9237−0.12960.38200.061*
C40.76226 (14)−0.05147 (12)0.30597 (12)0.0420 (3)
H40.7075−0.10690.27510.050*
C50.73484 (14)−0.02155 (11)0.42542 (12)0.0399 (3)
C60.77537 (18)0.06624 (13)0.47606 (15)0.0557 (4)
H60.81780.10960.43510.067*
C70.7537 (2)0.09083 (14)0.58750 (16)0.0615 (5)
H70.78090.15070.62070.074*
C80.6926 (2)0.02748 (16)0.64868 (17)0.0668 (5)
H80.67840.04400.72370.080*
C90.6523 (2)−0.06017 (17)0.59975 (18)0.0803 (7)
H90.6113−0.10370.64180.096*
C100.6723 (2)−0.08442 (14)0.48764 (16)0.0612 (5)
H100.6431−0.14380.45410.073*
C110.61158 (14)0.05336 (12)0.18708 (13)0.0423 (3)
H11A0.58790.09040.25140.051*
H11B0.5560−0.00320.17250.051*
C120.59372 (13)0.11430 (10)0.07624 (12)0.0384 (3)
C130.69449 (15)0.13512 (12)0.01952 (13)0.0462 (4)
H130.77670.11130.05120.055*
C140.67532 (17)0.19065 (13)−0.08330 (14)0.0516 (4)
H140.74410.2042−0.12010.062*
C150.55413 (17)0.22549 (12)−0.13037 (13)0.0493 (4)
C160.45097 (16)0.20677 (11)−0.07723 (14)0.0472 (4)
H160.36890.2305−0.10970.057*
C170.47304 (14)0.15158 (11)0.02584 (13)0.0414 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0977 (4)0.0735 (3)0.0540 (3)0.0099 (3)0.0054 (2)0.0273 (2)
Cl20.0427 (2)0.0853 (4)0.0740 (3)0.0131 (2)0.0178 (2)0.0169 (2)
O10.0397 (5)0.0633 (7)0.0391 (5)0.0109 (5)0.0102 (4)0.0171 (5)
N10.0429 (7)0.0529 (8)0.0419 (7)0.0123 (6)0.0114 (5)0.0047 (6)
N20.0617 (9)0.0497 (8)0.0615 (9)0.0087 (7)0.0194 (7)0.0056 (7)
N30.0511 (8)0.0718 (10)0.0559 (8)0.0001 (7)0.0246 (7)−0.0063 (7)
C10.0504 (9)0.0594 (11)0.0600 (10)0.0083 (8)0.0170 (8)−0.0083 (8)
C20.0532 (9)0.0570 (10)0.0563 (10)−0.0027 (8)0.0214 (8)−0.0003 (8)
C30.0498 (9)0.0656 (11)0.0367 (7)0.0176 (8)0.0081 (6)0.0062 (7)
C40.0447 (8)0.0478 (8)0.0340 (7)0.0067 (6)0.0093 (6)0.0057 (6)
C50.0413 (7)0.0441 (8)0.0342 (7)0.0067 (6)0.0074 (6)0.0038 (6)
C60.0672 (11)0.0508 (10)0.0492 (9)−0.0085 (8)0.0125 (8)0.0027 (7)
C70.0751 (12)0.0524 (10)0.0533 (10)0.0016 (9)0.0043 (9)−0.0124 (8)
C80.0790 (13)0.0802 (14)0.0453 (9)0.0048 (11)0.0223 (9)−0.0111 (9)
C90.1129 (18)0.0828 (15)0.0574 (11)−0.0245 (13)0.0460 (12)−0.0075 (11)
C100.0840 (13)0.0552 (10)0.0509 (9)−0.0154 (9)0.0291 (9)−0.0069 (8)
C110.0389 (7)0.0511 (9)0.0378 (7)0.0090 (6)0.0103 (6)0.0060 (6)
C120.0407 (7)0.0402 (8)0.0334 (6)0.0047 (6)0.0055 (5)−0.0018 (6)
C130.0413 (8)0.0567 (9)0.0402 (8)0.0082 (7)0.0073 (6)0.0060 (7)
C140.0535 (9)0.0578 (10)0.0448 (8)0.0019 (7)0.0128 (7)0.0085 (7)
C150.0646 (10)0.0430 (9)0.0373 (7)0.0048 (7)0.0033 (7)0.0056 (6)
C160.0493 (9)0.0432 (8)0.0442 (8)0.0108 (7)−0.0014 (7)−0.0013 (6)
C170.0405 (7)0.0412 (8)0.0418 (7)0.0050 (6)0.0064 (6)−0.0037 (6)

Geometric parameters (Å, °)

Cl1—C151.7404 (16)C6—H60.9300
Cl2—C171.7351 (16)C7—H70.9300
O1—C41.4178 (17)C8—C71.362 (3)
O1—C111.4148 (17)C8—C91.363 (3)
N1—N21.354 (2)C8—H80.9300
N1—C21.328 (2)C9—C101.383 (2)
N1—C31.4508 (19)C9—H90.9300
N3—C11.341 (2)C10—H100.9300
N3—C21.314 (2)C11—H11A0.9700
C1—N21.315 (2)C11—H11B0.9700
C1—H10.9300C12—C111.5010 (19)
C2—H20.9300C12—C131.386 (2)
C3—H3A0.9700C12—C171.386 (2)
C3—H3B0.9700C13—C141.384 (2)
C4—C31.521 (2)C13—H130.9300
C4—H40.9800C14—H140.9300
C5—C41.5117 (19)C15—C141.370 (2)
C5—C61.373 (2)C15—C161.377 (2)
C5—C101.375 (2)C16—H160.9300
C6—C71.383 (2)C17—C161.383 (2)
C11—O1—C4113.10 (11)C7—C8—C9119.91 (17)
N2—N1—C3121.08 (14)C7—C8—H8120.0
C2—N1—N2109.51 (14)C9—C8—H8120.0
C2—N1—C3129.37 (15)C8—C9—C10120.08 (19)
C1—N2—N1101.60 (14)C8—C9—H9120.0
C2—N3—C1101.94 (14)C10—C9—H9120.0
N2—C1—N3115.92 (16)C5—C10—C9120.59 (18)
N2—C1—H1122.0C5—C10—H10119.7
N3—C1—H1122.0C9—C10—H10119.7
N1—C2—H2124.5O1—C11—C12109.39 (11)
N3—C2—N1111.02 (16)O1—C11—H11A109.8
N3—C2—H2124.5O1—C11—H11B109.8
N1—C3—C4112.62 (13)C12—C11—H11A109.8
N1—C3—H3A109.1C12—C11—H11B109.8
N1—C3—H3B109.1H11A—C11—H11B108.2
C4—C3—H3A109.1C13—C12—C11122.44 (13)
C4—C3—H3B109.1C17—C12—C11120.33 (13)
H3A—C3—H3B107.8C17—C12—C13117.22 (13)
O1—C4—C3105.67 (12)C12—C13—H13119.3
O1—C4—C5113.48 (12)C14—C13—C12121.37 (14)
O1—C4—H4109.3C14—C13—H13119.3
C3—C4—H4109.3C13—C14—H14120.3
C5—C4—C3109.70 (12)C15—C14—C13119.37 (15)
C5—C4—H4109.3C15—C14—H14120.3
C6—C5—C4121.44 (14)C14—C15—Cl1119.59 (14)
C6—C5—C10118.65 (15)C14—C15—C16121.40 (14)
C10—C5—C4119.86 (14)C15—C16—C17118.01 (14)
C5—C6—C7120.62 (17)C15—C16—H16121.0
C5—C6—H6119.7C16—C15—Cl1119.00 (13)
C7—C6—H6119.7C17—C16—H16121.0
C6—C7—H7119.9C12—C17—Cl2119.60 (12)
C8—C7—C6120.13 (17)C16—C17—Cl2117.76 (12)
C8—C7—H7119.9C16—C17—C12122.62 (14)
C11—O1—C4—C5−65.39 (16)C6—C5—C10—C9−0.9 (3)
C11—O1—C4—C3174.37 (13)C5—C6—C7—C80.5 (3)
C4—O1—C11—C12−166.09 (12)C9—C8—C7—C6−0.2 (3)
C2—N1—N2—C10.78 (17)C7—C8—C9—C10−0.6 (4)
C3—N1—N2—C1178.59 (14)C8—C9—C10—C51.2 (4)
N2—N1—C2—N3−0.86 (19)C13—C12—C11—O10.3 (2)
C3—N1—C2—N3−178.43 (14)C17—C12—C11—O1179.72 (13)
N2—N1—C3—C4−81.93 (18)C11—C12—C13—C14179.31 (15)
C2—N1—C3—C495.4 (2)C17—C12—C13—C14−0.1 (2)
C1—N3—C2—N10.51 (19)C11—C12—C17—Cl2−0.4 (2)
C2—N3—C1—N20.0 (2)C11—C12—C17—C16−178.91 (14)
N3—C1—N2—N1−0.5 (2)C13—C12—C17—Cl2179.09 (12)
O1—C4—C3—N1−61.74 (18)C13—C12—C17—C160.5 (2)
C5—C4—C3—N1175.58 (14)C12—C13—C14—C15−0.3 (3)
C6—C5—C4—O1−42.85 (19)Cl1—C15—C14—C13−178.35 (13)
C6—C5—C4—C375.08 (19)C16—C15—C14—C130.3 (3)
C10—C5—C4—O1139.60 (16)Cl1—C15—C16—C17178.75 (12)
C10—C5—C4—C3−102.47 (18)C14—C15—C16—C170.1 (2)
C4—C5—C6—C7−177.53 (16)Cl2—C17—C16—C15−179.10 (12)
C10—C5—C6—C70.0 (3)C12—C17—C16—C15−0.5 (2)
C4—C5—C10—C9176.68 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C13—H13···O10.932.372.7191 (18)102

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2082).

References

  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc. Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Freer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350–1352.
  • Godefroi, E. F., Heeres, J., Van Cutsem, J. & Janssen, P. A. J. (1969). J. Med. Chem.12, 784–791. [PubMed]
  • Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008a). Acta Cryst. E64, o1437. [PMC free article] [PubMed]
  • Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008b). Acta Cryst. E64, o1496–o1497. [PMC free article] [PubMed]
  • Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008c). Acta Cryst. E64, o1588–o1589. [PMC free article] [PubMed]
  • Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008d). Acta Cryst. E64, o1655–o1656. [PMC free article] [PubMed]
  • Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007a). Bioorg. Med. Chem. Lett.17, 2233–2236. [PubMed]
  • Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007b). J. Heteroatom Chem.44, 731–734.
  • Özel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2008e). Acta Cryst. E64, o1914–o1915. [PMC free article] [PubMed]
  • Özel Güven, Ö., Tahtaci, H., Coles, S. J. & Hökelek, T. (2008f). Acta Cryst. E64, o1254. [PMC free article] [PubMed]
  • Paulvannan, K., Hale, R., Sedehi, D. & Chen, T. (2001). Tetrahedron, 57, 9677–9682.
  • Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979). Bull. Soc. Chim. Belg.88, 265–272.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wahbi, Y., Caujolle, R., Tournaire, C., Payard, M., Linas, M. D. & Seguela, J. P. (1995). Eur. J. Med. Chem.30, 955–962.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography