PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1576.
Published online 2008 November 20. doi:  10.1107/S1600536808037756
PMCID: PMC2959861

catena-Poly[[(2,2′-bipyridine-κ2 N,N′)copper(I)]-μ-cyanido-κ2 C:N-[(2,2′-bipyridine-κ2 N,N′)copper(I)]-μ-thio­cyanato-κ2 S:N]

Abstract

The title compound, [Cu2(CN)(SCN)(C10H8N2)2]n, contains two crystallographically independent CuI atoms, each in a distorted tetra­hedral geometry. Each Cu atom is coordinated by a bidentate chelating 2,2′-bipyridine ligand. A bridging cyanide anion links the two Cu(2,2′-bipyridine) units to form a binuclear unit. Adjacent binuclear units are connected by a thio­cyanate anion into a one-dimensional helical chain along [010]. The cyanide anion is disordered, with each site occupied by both C and N atoms in an occupancy ratio of 0.61 (5):0.39 (5). The S atom of the thio­cyanate anion is also disordered over two sites, with occupancy factors of 0.61 (3) and 0.39 (3). There are π–π inter­actions between the pyridyl rings of neighbouring chains [centroid–centroid distance = 3.82 (1) Å].

Related literature

For general background, see: Hibble & Chippindale (2005 [triangle]); Krautscheid et al. (1998 [triangle]); Ren et al. (2001 [triangle]). For related structures, see: Liu et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1576-scheme1.jpg

Experimental

Crystal data

  • [Cu2(CN)(SCN)(C10H8N2)2]
  • M r = 523.55
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1576-efi4.jpg
  • a = 14.977 (12) Å
  • b = 9.356 (7) Å
  • c = 17.065 (14) Å
  • β = 111.532 (12)°
  • V = 2224 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.03 mm−1
  • T = 293 (2) K
  • 0.45 × 0.12 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.521, T max = 0.868 (expected range = 0.490–0.817)
  • 16410 measured reflections
  • 5033 independent reflections
  • 3039 reflections with I > 2σ(I)
  • R int = 0.067

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.132
  • S = 1.02
  • 5033 reflections
  • 285 parameters
  • H-atom parameters constrained
  • Δρmax = 0.77 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808037756/hy2162sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037756/hy2162Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China (grant No. 20773104), the Program for New Century Excellent Talents in Universities (grant No. NCET-06-0891), the Key Project of the Chinese Ministry of Education (grant No. 208143) and the Important Project of Hubei Provincial Education Office (grant No. 09HB81).

supplementary crystallographic information

Comment

Transition-metal cyanide or thiocyanate complexes have recently attracted much interest because they can be used as linear linkers in crystal engineering. With their ambidexterous characters the SCN-and CN- anions are expected to be involved in a variety of coordination complexes. The syntheses and crystal structures of the complexes of CuSCN and CuCN with various donor ligands like substituted pyridines have been fully investigated (Hibble & Chippindale, 2005; Krautscheid et al., 1998; Ren et al., 2001). However, only a few complexes containing both SCN- and CN- anions have been reported recently (Liu et al., 2006). In this paper, we report the hydrothermal synthesis and structure of a new one-dimensional helical chain formed by both thiocyanate and cyanide anions.

The title compound contains a binuclear unit consisting of two CuI atoms bridged by a cyanide anion. Each Cu atom is coordinated by a bidentate chelating 2,2'-bipyridine (2,2'-bipy) molecule (Fig. 1). Both CuI atoms have a distorted tetrahedral geometry (Table 1). The bidentate SCN- ligand links adjacent binuclear [Cu2(2,2'-bpy)2(CN)] units into a one-dimensional helical chain running along the b axis. The intrachain Cu···Cu distance across the cyanide bridge is 4.9263 (3) Å. The helical chain is decorated by 2,2'-bipy ligands towards the lateral of the chain (Fig. 2). There are π–π interactions between the pyridyl rings of neighboring chains [centroid–centroid distance = 3.82 (1)Å]. The cyanide anion is disordered with each site occupied by both C and N atoms in an occupacy ratio of 0.61 (5):0.39 (5). The S atom of the thiocyanate anion is also disordered over two sites with occupacy factors of 0.61 (3) and 0.39 (3).

Experimental

All chemicals were of reagent grade quality obtained from commercial sources and used without further purification. A mixture of CuSCN (0.07 g, 0.60 mmol), NaCN (0.05 g, 1 mmol), 2,2'-bipy (0.06 g, 0.40 mmol) and water (10 ml) in a 25 ml Teflon-lined stainless steel reactor was heated from 298 to 453 K in 2 h and maintained at 453 K for 72 h. After the mixture was cooled to 298 K, red crystals of the title compound were obtained (yield 45%). IR (KBr pellet, cm-1): 3434(m), 2102(s), 1592(m), 1467(m), 1437(s), 1152(w), 759(s), 735(m).

Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Part of the polymeric structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x+3/2, y+1/2, -z+1/2.]
Fig. 2.
One-dimensional helical chain in the title compound.

Crystal data

[Cu2(CN)(SCN)(C10H8N2)2]F000 = 1056
Mr = 523.55Dx = 1.563 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1688 reflections
a = 14.977 (12) Åθ = 2.5–27.5º
b = 9.356 (7) ŵ = 2.03 mm1
c = 17.065 (14) ÅT = 293 (2) K
β = 111.532 (12)ºPrism, red
V = 2224 (3) Å30.45 × 0.12 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer5033 independent reflections
Radiation source: fine-focus sealed tube3039 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.067
T = 293(2) Kθmax = 27.4º
[var phi] and ω scansθmin = 2.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −19→19
Tmin = 0.521, Tmax = 0.868k = −12→11
16410 measured reflectionsl = −19→22

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.132  w = 1/[σ2(Fo2) + (0.0502P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5033 reflectionsΔρmax = 0.77 e Å3
285 parametersΔρmin = −0.43 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu10.67204 (4)0.70063 (6)0.09388 (4)0.04969 (19)
Cu20.94638 (4)0.38679 (6)0.12252 (4)0.0539 (2)
S1A1.0245 (11)0.2228 (17)0.2410 (10)0.0513 (17)0.61 (3)
S1B1.0036 (11)0.209 (3)0.2245 (12)0.0513 (17)0.39 (3)
N60.9046 (3)0.2050 (4)0.3342 (3)0.0567 (11)
C220.9503 (3)0.2109 (5)0.2928 (3)0.0436 (11)
N10.6847 (3)0.9214 (4)0.0748 (3)0.0497 (10)
N20.5776 (3)0.7276 (4)−0.0328 (2)0.0432 (9)
N30.9649 (3)0.2707 (4)0.0249 (3)0.0541 (10)
N41.0819 (3)0.4562 (4)0.1291 (3)0.0495 (10)
C10.7345 (4)1.0173 (6)0.1319 (4)0.0710 (16)
H10.77370.98390.18470.085*
C20.7316 (4)1.1623 (6)0.1179 (4)0.0701 (17)
H20.76711.22490.16020.084*
C30.6755 (4)1.2114 (6)0.0408 (4)0.0769 (18)
H30.67321.30860.02870.092*
C40.6225 (4)1.1165 (5)−0.0190 (4)0.0633 (15)
H40.58251.1493−0.07160.076*
C50.6282 (3)0.9721 (5)−0.0015 (3)0.0448 (11)
C60.5712 (3)0.8629 (5)−0.0623 (3)0.0437 (11)
C70.5128 (4)0.8949 (6)−0.1445 (3)0.0662 (15)
H70.50930.9882−0.16420.079*
C80.4604 (4)0.7896 (6)−0.1966 (3)0.0787 (18)
H80.42070.8107−0.25160.094*
C90.4672 (4)0.6532 (6)−0.1670 (4)0.0708 (17)
H90.43270.5794−0.20130.085*
C100.5263 (3)0.6271 (5)−0.0849 (3)0.0526 (12)
H100.53070.5339−0.06490.063*
C110.9012 (5)0.1844 (6)−0.0297 (4)0.0720 (16)
H110.84080.1758−0.02640.086*
C120.9201 (6)0.1071 (6)−0.0909 (4)0.086 (2)
H120.87370.0478−0.12770.103*
C131.0086 (6)0.1203 (7)−0.0958 (4)0.091 (2)
H131.02340.0693−0.13620.109*
C141.0758 (5)0.2089 (6)−0.0409 (4)0.0738 (17)
H141.13620.2185−0.04390.089*
C151.0525 (4)0.2834 (5)0.0187 (3)0.0510 (12)
C161.1191 (3)0.3817 (5)0.0804 (3)0.0508 (12)
C171.2147 (4)0.4011 (7)0.0900 (4)0.0759 (17)
H171.24070.34970.05680.091*
C181.2706 (4)0.4969 (8)0.1488 (4)0.091 (2)
H181.33420.51120.15470.110*
C191.2339 (4)0.5700 (7)0.1979 (4)0.0810 (19)
H191.27120.63390.23840.097*
C201.1390 (4)0.5467 (6)0.1858 (4)0.0646 (15)
H201.11310.59730.21940.078*
N5A0.8391 (3)0.4961 (4)0.1195 (3)0.0479 (14)0.61 (5)
C21A0.7751 (3)0.5696 (4)0.1130 (3)0.0426 (13)0.61 (5)
N5B0.7751 (3)0.5696 (4)0.1130 (3)0.0426 (13)0.39 (5)
C21B0.8391 (3)0.4961 (4)0.1195 (3)0.0479 (14)0.39 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0544 (4)0.0509 (4)0.0433 (4)0.0116 (3)0.0172 (3)0.0052 (3)
Cu20.0502 (3)0.0548 (4)0.0629 (4)0.0054 (3)0.0283 (3)0.0000 (3)
S1A0.040 (4)0.068 (3)0.045 (4)0.015 (3)0.015 (3)0.014 (3)
S1B0.040 (4)0.068 (3)0.045 (4)0.015 (3)0.015 (3)0.014 (3)
N60.059 (3)0.064 (3)0.047 (3)−0.013 (2)0.020 (2)−0.003 (2)
C220.043 (2)0.042 (3)0.038 (3)−0.003 (2)0.007 (2)0.003 (2)
N10.044 (2)0.048 (2)0.047 (3)0.0014 (18)0.0034 (19)0.0004 (19)
N20.050 (2)0.040 (2)0.039 (2)0.0045 (17)0.0158 (18)0.0020 (17)
N30.067 (3)0.054 (3)0.042 (2)0.004 (2)0.020 (2)0.002 (2)
N40.051 (2)0.046 (2)0.057 (3)0.0012 (19)0.025 (2)0.007 (2)
C10.062 (3)0.060 (4)0.065 (4)−0.001 (3)−0.008 (3)0.001 (3)
C20.056 (3)0.056 (3)0.080 (4)−0.009 (3)0.003 (3)−0.010 (3)
C30.065 (3)0.047 (3)0.098 (5)−0.005 (3)0.006 (4)0.005 (3)
C40.059 (3)0.043 (3)0.075 (4)0.003 (2)0.009 (3)0.010 (3)
C50.037 (2)0.048 (3)0.050 (3)0.006 (2)0.016 (2)0.003 (2)
C60.046 (2)0.045 (3)0.040 (3)0.007 (2)0.016 (2)0.004 (2)
C70.092 (4)0.045 (3)0.043 (3)0.007 (3)0.003 (3)0.009 (3)
C80.101 (4)0.070 (4)0.035 (3)0.011 (3)−0.010 (3)0.000 (3)
C90.086 (4)0.052 (3)0.048 (3)−0.001 (3)−0.006 (3)−0.007 (3)
C100.069 (3)0.038 (3)0.046 (3)0.003 (2)0.015 (3)0.000 (2)
C110.088 (4)0.065 (4)0.061 (4)−0.001 (3)0.025 (3)−0.002 (3)
C120.130 (6)0.064 (4)0.063 (4)−0.016 (4)0.034 (4)−0.010 (3)
C130.160 (7)0.062 (4)0.069 (5)−0.004 (4)0.064 (5)−0.007 (3)
C140.110 (5)0.059 (4)0.080 (4)0.009 (3)0.066 (4)0.006 (3)
C150.072 (3)0.045 (3)0.046 (3)0.015 (2)0.033 (3)0.014 (2)
C160.054 (3)0.054 (3)0.050 (3)0.015 (2)0.026 (3)0.019 (3)
C170.059 (3)0.113 (5)0.066 (4)0.015 (3)0.035 (3)0.012 (4)
C180.042 (3)0.151 (7)0.078 (5)−0.010 (4)0.019 (3)0.002 (5)
C190.055 (3)0.107 (5)0.081 (5)−0.015 (3)0.025 (3)0.002 (4)
C200.069 (3)0.063 (4)0.070 (4)−0.009 (3)0.036 (3)−0.005 (3)
N5A0.052 (3)0.043 (3)0.046 (3)−0.005 (2)0.014 (2)−0.002 (2)
C21A0.043 (3)0.040 (3)0.043 (3)0.004 (2)0.013 (2)0.0001 (19)
N5B0.043 (3)0.040 (3)0.043 (3)0.004 (2)0.013 (2)0.0001 (19)
C21B0.052 (3)0.043 (3)0.046 (3)−0.005 (2)0.014 (2)−0.002 (2)

Geometric parameters (Å, °)

Cu1—C21A1.903 (5)C4—H40.9300
Cu1—N6i1.964 (5)C5—C61.483 (6)
Cu1—N12.111 (4)C6—C71.387 (6)
Cu1—N22.119 (4)C7—C81.365 (7)
Cu2—N5A1.889 (5)C7—H70.9300
Cu2—N32.091 (4)C8—C91.363 (7)
Cu2—N42.094 (4)C8—H80.9300
Cu2—S1A2.465 (15)C9—C101.376 (7)
Cu2—S1B2.33 (2)C9—H90.9300
S1A—C221.658 (14)C10—H100.9300
S1B—C221.64 (2)C11—C121.382 (8)
N6—C221.152 (6)C11—H110.9300
N6—Cu1ii1.964 (4)C12—C131.364 (9)
N1—C11.334 (6)C12—H120.9300
N1—C51.351 (6)C13—C141.373 (9)
N2—C101.329 (6)C13—H130.9300
N2—C61.353 (5)C14—C151.379 (7)
N3—C111.332 (7)C14—H140.9300
N3—C151.359 (6)C15—C161.476 (7)
N4—C201.333 (6)C16—C171.392 (7)
N4—C161.353 (6)C17—C181.377 (8)
C1—C21.375 (7)C17—H170.9300
C1—H10.9300C18—C191.344 (8)
C2—C31.356 (8)C18—H180.9300
C2—H20.9300C19—C201.377 (7)
C3—C41.365 (7)C19—H190.9300
C3—H30.9300C20—H200.9300
C4—C51.380 (6)N5A—C21A1.151 (5)
C21A—Cu1—N6i121.98 (18)N2—C6—C7120.8 (4)
C21A—Cu1—N1122.94 (16)N2—C6—C5116.1 (4)
N6i—Cu1—N1100.50 (16)C7—C6—C5123.2 (4)
C21A—Cu1—N2116.55 (16)C8—C7—C6120.1 (5)
N6i—Cu1—N2108.09 (16)C8—C7—H7120.0
N1—Cu1—N277.86 (14)C6—C7—H7120.0
N5A—Cu2—N3128.31 (17)C9—C8—C7119.2 (5)
N5A—Cu2—N4129.13 (16)C9—C8—H8120.4
N3—Cu2—N478.14 (17)C7—C8—H8120.4
N5A—Cu2—S1B118.8 (6)C8—C9—C10118.4 (5)
N3—Cu2—S1B96.1 (6)C8—C9—H9120.8
N4—Cu2—S1B95.6 (5)C10—C9—H9120.8
N5A—Cu2—S1A120.1 (3)N2—C10—C9123.6 (5)
N3—Cu2—S1A99.7 (4)N2—C10—H10118.2
N4—Cu2—S1A89.5 (4)C9—C10—H10118.2
S1B—Cu2—S1A7.9 (7)N3—C11—C12123.6 (6)
C22—S1A—Cu2105.7 (7)N3—C11—H11118.2
C22—S1B—Cu2112.6 (11)C12—C11—H11118.2
C22—N6—Cu1ii178.3 (4)C13—C12—C11118.1 (7)
N6—C22—S1B172.6 (7)C13—C12—H12120.9
N6—C22—S1A174.8 (7)C11—C12—H12120.9
C1—N1—C5116.9 (4)C12—C13—C14119.9 (6)
C1—N1—Cu1127.1 (4)C12—C13—H13120.0
C5—N1—Cu1115.6 (3)C14—C13—H13120.0
C10—N2—C6117.9 (4)C13—C14—C15119.2 (6)
C10—N2—Cu1127.2 (3)C13—C14—H14120.4
C6—N2—Cu1114.9 (3)C15—C14—H14120.4
C11—N3—C15117.6 (5)N3—C15—C14121.7 (5)
C11—N3—Cu2126.9 (4)N3—C15—C16114.7 (4)
C15—N3—Cu2115.5 (3)C14—C15—C16123.6 (5)
C20—N4—C16118.3 (4)N4—C16—C17119.9 (5)
C20—N4—Cu2125.9 (3)N4—C16—C15115.9 (4)
C16—N4—Cu2114.7 (3)C17—C16—C15124.2 (5)
N1—C1—C2124.3 (5)C18—C17—C16119.7 (6)
N1—C1—H1117.9C18—C17—H17120.2
C2—C1—H1117.9C16—C17—H17120.2
C3—C2—C1118.1 (5)C19—C18—C17120.4 (6)
C3—C2—H2120.9C19—C18—H18119.8
C1—C2—H2120.9C17—C18—H18119.8
C2—C3—C4119.2 (5)C18—C19—C20117.6 (6)
C2—C3—H3120.4C18—C19—H19121.2
C4—C3—H3120.4C20—C19—H19121.2
C3—C4—C5120.2 (5)N4—C20—C19124.1 (5)
C3—C4—H4119.9N4—C20—H20117.9
C5—C4—H4119.9C19—C20—H20117.9
N1—C5—C4121.3 (4)C21A—N5A—Cu2174.5 (4)
N1—C5—C6115.4 (4)N5A—C21A—Cu1174.5 (4)
C4—C5—C6123.3 (4)
N5A—Cu2—S1A—C2212.1 (10)C1—N1—C5—C6−177.9 (4)
N3—Cu2—S1A—C22−133.7 (7)Cu1—N1—C5—C6−4.4 (5)
N4—Cu2—S1A—C22148.5 (8)C3—C4—C5—N10.9 (8)
S1B—Cu2—S1A—C22−71 (6)C3—C4—C5—C6178.5 (5)
N5A—Cu2—S1B—C22−7.1 (12)C10—N2—C6—C70.0 (7)
N3—Cu2—S1B—C22−147.4 (9)Cu1—N2—C6—C7179.2 (4)
N4—Cu2—S1B—C22134.0 (9)C10—N2—C6—C5178.8 (4)
S1A—Cu2—S1B—C2295 (7)Cu1—N2—C6—C5−1.9 (5)
Cu2—S1B—C22—S1A−109 (7)N1—C5—C6—N24.2 (6)
Cu2—S1A—C22—S1B59 (6)C4—C5—C6—N2−173.6 (4)
C21A—Cu1—N1—C1−70.8 (5)N1—C5—C6—C7−177.0 (5)
N6i—Cu1—N1—C168.9 (4)C4—C5—C6—C75.2 (7)
N2—Cu1—N1—C1175.3 (5)N2—C6—C7—C80.4 (8)
C21A—Cu1—N1—C5116.5 (3)C5—C6—C7—C8−178.4 (5)
N6i—Cu1—N1—C5−103.8 (3)C6—C7—C8—C9−0.6 (9)
N2—Cu1—N1—C52.6 (3)C7—C8—C9—C100.5 (9)
C21A—Cu1—N2—C1058.0 (4)C6—N2—C10—C9−0.1 (7)
N6i—Cu1—N2—C10−83.9 (4)Cu1—N2—C10—C9−179.3 (4)
N1—Cu1—N2—C10178.9 (4)C8—C9—C10—N2−0.1 (9)
C21A—Cu1—N2—C6−121.2 (3)C15—N3—C11—C120.7 (8)
N6i—Cu1—N2—C697.0 (3)Cu2—N3—C11—C12−177.6 (4)
N1—Cu1—N2—C6−0.3 (3)N3—C11—C12—C13−0.2 (10)
N5A—Cu2—N3—C11−44.5 (5)C11—C12—C13—C14−0.2 (10)
N4—Cu2—N3—C11−175.5 (4)C12—C13—C14—C150.1 (9)
S1B—Cu2—N3—C1190.0 (6)C11—N3—C15—C14−0.9 (7)
S1A—Cu2—N3—C1197.1 (6)Cu2—N3—C15—C14177.7 (4)
N5A—Cu2—N3—C15137.1 (3)C11—N3—C15—C16179.4 (4)
N4—Cu2—N3—C156.1 (3)Cu2—N3—C15—C16−2.1 (5)
S1B—Cu2—N3—C15−88.4 (5)C13—C14—C15—N30.5 (8)
S1A—Cu2—N3—C15−81.3 (5)C13—C14—C15—C16−179.8 (5)
N5A—Cu2—N4—C2052.6 (5)C20—N4—C16—C17−0.3 (7)
N3—Cu2—N4—C20−177.2 (4)Cu2—N4—C16—C17−169.0 (4)
S1B—Cu2—N4—C20−82.2 (7)C20—N4—C16—C15−179.9 (4)
S1A—Cu2—N4—C20−77.2 (5)Cu2—N4—C16—C1511.4 (5)
N5A—Cu2—N4—C16−139.7 (3)N3—C15—C16—N4−6.2 (6)
N3—Cu2—N4—C16−9.5 (3)C14—C15—C16—N4174.0 (5)
S1B—Cu2—N4—C1685.5 (7)N3—C15—C16—C17174.2 (5)
S1A—Cu2—N4—C1690.5 (5)C14—C15—C16—C17−5.5 (8)
C5—N1—C1—C20.0 (8)N4—C16—C17—C18−0.3 (8)
Cu1—N1—C1—C2−172.6 (4)C15—C16—C17—C18179.2 (5)
N1—C1—C2—C3−0.9 (9)C16—C17—C18—C191.0 (10)
C1—C2—C3—C41.7 (9)C17—C18—C19—C20−1.0 (10)
C2—C3—C4—C5−1.7 (9)C16—N4—C20—C190.4 (8)
C1—N1—C5—C40.0 (7)Cu2—N4—C20—C19167.7 (4)
Cu1—N1—C5—C4173.5 (4)C18—C19—C20—N40.3 (9)

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+3/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2162).

References

  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hibble, S.-J. & Chippindale, A.-M. (2005). Z. Anorg. Allg. Chem.631, 542–545.
  • Krautscheid, H., Emig, N., Klaassen, N. & Seringer, P. (1998). J. Chem. Soc. Dalton Trans. pp. 3071–3077.
  • Liu, X., Guo, G.-C., Fu, M.-L., Liu, X.-H., Wang, M.-S. & Huang, J.-S. (2006). Inorg. Chem.45, 3679–3685. [PubMed]
  • Ren, C.-X., Zhu, H.-L., Yang, G. & Chen, X.-M. (2001). J. Chem. Soc. Dalton Trans. pp. 85–90.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography