PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1547.
Published online 2008 November 13. doi:  10.1107/S1600536808036866
PMCID: PMC2959859

catena-Poly[[diaqua­(2,2′-bipyridine-κ2 N,N′)nickel(II)]-μ-biphenyl-2,2′-dicarboxyl­ato-κ2 O:O′]

Abstract

In the title compound, [Ni(C14H8O4)(C10H8N2)(H2O)2]n, the NiII atom is coordinated in a slightly distorted octa­hedral geometry by two water mol­ecules, two N atoms from a 2,2′-bipyridine ligand and two O atoms from the carboxyl­ate groups of two 2,2′-biphenyl­dicarboxyl­ate (2,2′-dpa) ligands. The 2,2′-dpa ligand acts as a bridge between neighbouring NiII atoms, forming one-dimensional coordination polymers along [100]. The coordinated water mol­ecules form hydrogen bonds to the carboxyl­ate O atoms of 2,2′-dpa within the same coordination polymer, and one O—H(...)π inter­action is also formed to 2,2′-dpa.

Related literature

For other metal–organic frameworks containing 2,2′-dpa, see: Rueff et al. (2003 [triangle]); Wang et al. (2006 [triangle]); Xu et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1547-scheme1.jpg

Experimental

Crystal data

  • [Ni(C14H8O4)(C10H8N2)(H2O)2]
  • M r = 491.11
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1547-efi1.jpg
  • a = 10.9087 (15) Å
  • b = 11.214 (2) Å
  • c = 18.129 (3) Å
  • V = 2217.6 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.92 mm−1
  • T = 296 (2) K
  • 0.42 × 0.27 × 0.19 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.699, T max = 0.845
  • 11746 measured reflections
  • 3953 independent reflections
  • 3351 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.088
  • S = 1.00
  • 3953 reflections
  • 310 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.30 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1694 Friedel pairs
  • Flack parameter: 0.042 (16)

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808036866/bi2317sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036866/bi2317Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from Maoming University.

supplementary crystallographic information

Comment

2,2'-Biphenyldicarboxylic acid (H2dpa) has been demonstrated to be a useful ligand for constructing metal-organic frameworks (Rueff et al., 2003; Wang et al., 2006; Xu et al., 2006). The title compound is a NiII coordination polymer in which 2,2'-biphenyldicarboxylate (2,2'-dpa) acts as a bridging ligand.

The asymmetric unit (Fig. 1) contains one NiII atom coordinated by one 2,2'-bipyridine ligand, 2,2'-dpa and two water molecules. The NiII atom is hexacoordinated in a slightly distorted octahedral geometry by two water molecules, two N atoms from 2,2'-bipyridine, and two O atoms from carboxylate groups of two 2,2'-dpa. The 2,2'-dpa ligand acts as a bridge to link two neighboring NiII atoms, forming a 1-D coordination polymer along [100] (Fig. 2). Hydrogen bonds from the coordinated water molecules and the O atoms of the carboxylate groups are formed within the same coordination polymer (Fig. 3). One water molecule also forms an O—H···πi interaction to the neighbouring benzene ring of 2,2'-dpa.

Experimental

A mixture of nickel(II) chloride hexahydrate (0.1 mmol), 2,2'-bipyridine (0.1 mmol), biphenyl-2,2'-dicarboxylic acid (0.2 mmol) and H2O (16 ml) in a 25 ml Teflon-lined stainless steel autoclave was kept at 463 K for five days. Green crystals were obtained after cooling to room temperature with a yield of 12%. Elemental analysis calculated: C 58.64, H 4.89, N 5.70%; found: C 58.62, H 4.86, N 5.65%.

Refinement

H atoms of the water molecules were located from difference Fourier maps and refined freely with Uiso(H) = 1.2Ueq(O). All other H atoms were placed in calculated positions with C—H = 0.93 Å and allowed to ride with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Asymmetric unit of the title compound showing displacement ellipsoids at 30% for non-H atoms.
Fig. 2.
1-D coordination polymer running along the [100] direction.
Fig. 3.
View of the packing along the a axis.

Crystal data

[Ni(C14H8O4)(C10H8N2)(H2O)2]F000 = 1016
Mr = 491.11Dx = 1.471 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3953 reflections
a = 10.9087 (15) Åθ = 2.1–25.1º
b = 11.214 (2) ŵ = 0.92 mm1
c = 18.129 (3) ÅT = 296 (2) K
V = 2217.6 (6) Å3Block, green
Z = 40.42 × 0.27 × 0.19 mm

Data collection

Bruker APEXII CCD diffractometer3953 independent reflections
Radiation source: fine-focus sealed tube3351 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.033
T = 296(2) Kθmax = 25.1º
[var phi] and ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Bruker, 2001)h = −13→12
Tmin = 0.699, Tmax = 0.845k = −9→13
11746 measured reflectionsl = −20→21

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.034  w = 1/[σ2(Fo2) + (0.051P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.21 e Å3
3953 reflectionsΔρmin = −0.30 e Å3
310 parametersExtinction correction: none
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1694 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.042 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.24756 (4)0.69154 (3)0.898676 (19)0.03527 (12)
C10.5625 (3)1.0010 (3)1.06148 (16)0.0367 (7)
C20.4305 (3)1.0354 (3)1.03948 (16)0.0377 (8)
C30.4167 (4)1.1232 (3)0.98610 (18)0.0525 (9)
H30.48641.15820.96610.063*
C40.3031 (5)1.1602 (4)0.9617 (2)0.0673 (14)
H40.29771.21880.92550.081*
C50.1971 (4)1.1108 (4)0.9905 (2)0.0616 (12)
H50.12081.13530.97350.074*
C60.2059 (3)1.0243 (3)1.04525 (19)0.0515 (10)
H60.13510.99181.06560.062*
C70.3233 (3)0.9853 (3)1.07010 (16)0.0386 (8)
C80.3257 (3)0.9030 (3)1.13631 (16)0.0360 (7)
C90.3102 (3)0.9525 (3)1.20745 (18)0.0492 (9)
H90.29881.03451.21100.059*
C100.3108 (4)0.8874 (4)1.27158 (19)0.0552 (10)
H100.29540.92391.31670.066*
C110.3343 (4)0.7687 (4)1.26763 (18)0.0553 (10)
H110.33830.72221.31010.066*
C120.3524 (3)0.7181 (3)1.19772 (17)0.0469 (8)
H120.37060.63721.19500.056*
C130.3445 (3)0.7820 (3)1.13252 (16)0.0356 (7)
C140.3500 (3)0.7168 (3)1.05824 (16)0.0342 (7)
C150.4937 (3)0.8346 (3)0.8927 (2)0.0509 (9)
H150.49580.82240.94350.061*
C160.5799 (3)0.9085 (3)0.8606 (2)0.0608 (10)
H160.63920.94570.88940.073*
C170.5771 (4)0.9267 (4)0.7847 (3)0.0678 (12)
H170.63370.97720.76250.081*
C180.4900 (4)0.8695 (4)0.7424 (2)0.0596 (10)
H180.48770.88020.69150.071*
C190.4047 (3)0.7949 (3)0.77769 (18)0.0401 (7)
C200.3066 (3)0.7286 (3)0.73743 (17)0.0383 (8)
C210.3005 (4)0.7230 (3)0.65934 (18)0.0527 (10)
H210.35950.76090.63060.063*
C220.2058 (4)0.6605 (3)0.6264 (2)0.0587 (11)
H220.20070.65550.57530.070*
C230.1192 (4)0.6058 (3)0.66986 (18)0.0525 (10)
H230.05470.56380.64860.063*
C240.1297 (3)0.6143 (3)0.74713 (18)0.0451 (8)
H240.07050.57800.77640.054*
N10.4065 (2)0.7797 (2)0.85219 (14)0.0402 (7)
N20.2231 (2)0.6733 (2)0.78055 (13)0.0363 (6)
O10.28142 (19)0.75413 (19)1.00612 (11)0.0407 (6)
O20.4185 (2)0.6272 (2)1.05422 (12)0.0451 (6)
O30.58196 (19)0.89368 (18)1.07528 (12)0.0385 (5)
O40.6422 (2)1.0789 (2)1.06222 (17)0.0670 (8)
O50.1519 (2)0.85857 (18)0.89069 (12)0.0394 (5)
H1W0.187 (2)0.895 (3)0.9264 (15)0.047*
H2W0.0764 (16)0.858 (3)0.9025 (17)0.047*
O60.3552 (2)0.5345 (2)0.91659 (13)0.0466 (6)
H3W0.302 (3)0.484 (3)0.9225 (18)0.056*
H4W0.385 (3)0.557 (3)0.9558 (13)0.056*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0390 (2)0.0344 (2)0.0325 (2)−0.0010 (2)0.0015 (2)−0.00163 (16)
C10.047 (2)0.0325 (18)0.0310 (16)0.0033 (16)0.0056 (14)0.0009 (14)
C20.058 (2)0.0275 (16)0.0275 (15)0.0093 (16)−0.0028 (15)−0.0034 (13)
C30.080 (3)0.0377 (19)0.0401 (19)0.006 (2)−0.0049 (19)0.0003 (17)
C40.114 (4)0.042 (2)0.045 (2)0.026 (2)−0.033 (2)−0.0035 (18)
C50.080 (3)0.049 (2)0.056 (2)0.034 (2)−0.032 (2)−0.015 (2)
C60.054 (2)0.052 (2)0.048 (2)0.0185 (18)−0.0131 (16)−0.0215 (18)
C70.049 (2)0.0350 (18)0.0319 (16)0.0132 (15)−0.0035 (15)−0.0093 (14)
C80.0320 (17)0.0416 (18)0.0343 (16)0.0010 (14)0.0026 (14)−0.0022 (14)
C90.056 (2)0.046 (2)0.045 (2)0.0093 (17)0.0060 (17)−0.0082 (17)
C100.065 (2)0.068 (3)0.0335 (18)−0.004 (2)0.0110 (17)−0.0084 (18)
C110.071 (3)0.065 (3)0.0296 (17)−0.011 (2)0.0051 (18)0.0021 (17)
C120.059 (2)0.0417 (19)0.0402 (18)−0.0088 (17)−0.0019 (17)0.0041 (16)
C130.0349 (17)0.0436 (19)0.0283 (15)−0.0034 (15)0.0040 (13)−0.0020 (14)
C140.0370 (17)0.0334 (18)0.0321 (16)−0.0062 (15)0.0009 (14)−0.0021 (14)
C150.0413 (19)0.054 (2)0.057 (2)−0.0117 (16)0.0082 (18)−0.0048 (19)
C160.043 (2)0.053 (2)0.087 (3)−0.0107 (19)0.007 (2)−0.002 (2)
C170.048 (2)0.054 (2)0.102 (3)−0.013 (2)0.015 (2)0.019 (2)
C180.061 (2)0.056 (2)0.062 (2)−0.002 (2)0.016 (2)0.018 (2)
C190.0407 (17)0.0313 (17)0.0482 (19)0.0054 (15)0.0106 (15)0.0042 (15)
C200.0513 (19)0.0280 (16)0.0356 (17)0.0079 (15)0.0065 (15)0.0024 (14)
C210.078 (3)0.043 (2)0.0376 (18)0.0082 (19)0.0099 (18)0.0045 (16)
C220.096 (3)0.050 (2)0.0305 (17)0.018 (2)−0.0062 (19)0.0007 (17)
C230.072 (3)0.041 (2)0.044 (2)0.0062 (19)−0.0159 (18)−0.0114 (18)
C240.053 (2)0.042 (2)0.0401 (19)−0.0008 (17)−0.0012 (16)−0.0061 (16)
N10.0388 (15)0.0395 (15)0.0423 (16)−0.0044 (13)0.0074 (12)−0.0037 (13)
N20.0432 (16)0.0361 (14)0.0295 (12)0.0032 (12)0.0015 (11)−0.0020 (11)
O10.0520 (14)0.0380 (12)0.0322 (11)0.0053 (10)−0.0061 (10)−0.0038 (9)
O20.0518 (14)0.0400 (13)0.0436 (13)0.0029 (12)−0.0086 (11)−0.0076 (11)
O30.0403 (12)0.0297 (12)0.0456 (12)0.0018 (10)−0.0019 (10)0.0082 (10)
O40.0539 (15)0.0333 (14)0.114 (2)−0.0040 (13)0.0030 (16)0.0071 (15)
O50.0418 (12)0.0328 (12)0.0436 (13)0.0019 (10)0.0014 (11)−0.0006 (10)
O60.0465 (15)0.0415 (14)0.0519 (15)0.0074 (11)−0.0036 (12)−0.0072 (12)

Geometric parameters (Å, °)

Ni1—O3i2.098 (2)C13—C141.533 (4)
Ni1—O12.103 (2)C14—O21.255 (4)
Ni1—O62.142 (2)C14—O11.276 (3)
Ni1—O52.149 (2)C15—N11.351 (4)
Ni1—N12.166 (3)C15—C161.383 (5)
Ni1—N22.168 (2)C15—H150.930
C1—O41.233 (4)C16—C171.391 (6)
C1—O31.247 (4)C16—H160.930
C1—C21.543 (5)C17—C181.379 (6)
C2—C31.388 (5)C17—H170.930
C2—C71.412 (5)C18—C191.406 (5)
C3—C41.380 (6)C18—H180.930
C3—H30.930C19—N11.361 (4)
C4—C51.385 (6)C19—C201.493 (5)
C4—H40.930C20—N21.352 (4)
C5—C61.391 (5)C20—C211.419 (4)
C5—H50.930C21—C221.385 (6)
C6—C71.427 (4)C21—H210.930
C6—H60.930C22—C231.374 (5)
C7—C81.514 (4)C22—H220.930
C8—C131.374 (5)C23—C241.409 (5)
C8—C91.414 (4)C23—H230.930
C9—C101.373 (5)C24—N21.357 (4)
C9—H90.930C24—H240.930
C10—C111.358 (6)O3—Ni1ii2.098 (2)
C10—H100.930O5—H1W0.86 (2)
C11—C121.402 (5)O5—H2W0.85 (2)
C11—H110.930O6—H3W0.81 (2)
C12—C131.385 (4)O6—H4W0.82 (2)
C12—H120.930
O3i—Ni1—O195.44 (8)C8—C13—C12118.5 (3)
O3i—Ni1—O693.63 (9)C8—C13—C14121.3 (3)
O1—Ni1—O692.16 (9)C12—C13—C14120.1 (3)
O3i—Ni1—O589.65 (8)O2—C14—O1124.7 (3)
O1—Ni1—O581.77 (8)O2—C14—C13117.1 (3)
O6—Ni1—O5173.36 (9)O1—C14—C13118.1 (3)
O3i—Ni1—N1169.97 (9)N1—C15—C16121.5 (4)
O1—Ni1—N193.86 (9)N1—C15—H15119.2
O6—Ni1—N189.75 (10)C16—C15—H15119.2
O5—Ni1—N187.97 (9)C15—C16—C17119.3 (4)
O3i—Ni1—N294.20 (9)C15—C16—H16120.3
O1—Ni1—N2165.48 (9)C17—C16—H16120.4
O6—Ni1—N298.04 (9)C18—C17—C16119.8 (4)
O5—Ni1—N287.46 (9)C18—C17—H17120.1
N1—Ni1—N275.96 (10)C16—C17—H17120.1
O4—C1—O3124.2 (3)C17—C18—C19118.7 (4)
O4—C1—C2118.9 (3)C17—C18—H18120.7
O3—C1—C2116.9 (3)C19—C18—H18120.7
C3—C2—C7117.8 (3)N1—C19—C18121.1 (3)
C3—C2—C1117.3 (3)N1—C19—C20115.7 (3)
C7—C2—C1124.9 (3)C18—C19—C20123.2 (3)
C4—C3—C2122.3 (4)N2—C20—C21121.7 (3)
C4—C3—H3118.8N2—C20—C19115.4 (3)
C2—C3—H3118.8C21—C20—C19122.9 (3)
C5—C4—C3120.5 (3)C22—C21—C20119.2 (4)
C5—C4—H4119.7C22—C21—H21120.4
C3—C4—H4119.7C20—C21—H21120.4
C4—C5—C6119.4 (3)C23—C22—C21119.5 (3)
C4—C5—H5120.3C23—C22—H22120.3
C6—C5—H5120.3C21—C22—H22120.3
C5—C6—C7120.0 (4)C22—C23—C24119.0 (3)
C5—C6—H6120.0C22—C23—H23120.5
C7—C6—H6120.0C24—C23—H23120.5
C2—C7—C6119.8 (3)N2—C24—C23122.5 (3)
C2—C7—C8122.7 (3)N2—C24—H24118.7
C6—C7—C8116.9 (3)C23—C24—H24118.7
C13—C8—C9116.8 (3)C15—N1—C19119.5 (3)
C13—C8—C7124.4 (3)C15—N1—Ni1124.1 (2)
C9—C8—C7118.8 (3)C19—N1—Ni1115.6 (2)
C10—C9—C8124.3 (3)C20—N2—C24118.1 (3)
C10—C9—H9117.9C20—N2—Ni1116.4 (2)
C8—C9—H9117.8C24—N2—Ni1125.4 (2)
C11—C10—C9118.5 (3)C14—O1—Ni1132.81 (19)
C11—C10—H10120.7C1—O3—Ni1ii129.1 (2)
C9—C10—H10120.8Ni1—O5—H1W99 (2)
C10—C11—C12118.1 (3)Ni1—O5—H2W117 (2)
C10—C11—H11121.0H1W—O5—H2W104 (2)
C12—C11—H11120.9Ni1—O6—H3W102 (3)
C13—C12—C11123.6 (3)Ni1—O6—H4W95 (3)
C13—C12—H12118.2H3W—O6—H4W112 (3)
C11—C12—H12118.2

Symmetry codes: (i) x−1/2, −y+3/2, −z+2; (ii) x+1/2, −y+3/2, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H1W···Cg10.86 (2)2.913.741 (3)163
O5—H2W···O2i0.85 (2)1.90 (2)2.740 (3)169 (3)
O6—H3W···O4i0.81 (2)1.91 (2)2.676 (4)158 (4)
O6—H4W···O20.82 (2)1.98 (2)2.790 (3)167 (4)

Symmetry codes: (i) x−1/2, −y+3/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2317).

References

  • Bruker (2001). SADABS and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Rueff, J.-M., Pillet, S., Bonaventure, G., Souhassou, M. & Rabu, P. (2003). Eur. J. Inorg. Chem. pp. 4173–4178.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, R.-H., Gong, Y.-Q., Han, L., Yuan, D.-Q., Lou, B.-Y., Wu, B.-L. & Hong, M.-C. (2006). J. Mol. Struct.784, 1–6.
  • Xu, X.-X., Lu, Y., Wang, E.-B., Ma, Y. & Bai, X.-L. (2006). Cryst. Growth Des.6, 2029–2035.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography