PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2367.
Published online 2008 November 20. doi:  10.1107/S1600536808037355
PMCID: PMC2959857

2-r-(4-Chloro­phen­yl)-6-c-phenyl-3,4,5,6-tetra­hydro-2H-thio­pyran-4-one 1-oxide

Abstract

The thio­pyran unit of the title mol­ecule, C17H15ClO2S, is in chair form. A crystallographic mirror plane bis­ects the mol­ecule, passing through the O=S and the opposite C=O atoms of the central ring, with statistical disorder of the Cl atom. The geometry around the S atom is tetra­hedral and the carbonyl C is planar. The 4-chloro­phenyl group at the 2 position and the phenyl ring at the 6 position have equatorial orientations. Inter­molecular C—H(...)O and C—H(...)Cl hydrogen bonds are found in the crystal structure. In addition, there is a short O(...)C inter­molecular contact [2.970 (5) Å].

Related literature

For a related crystal structure, see: Thiruvalluvar et al. (2007 [triangle]). For applications of sulfoxides, see: Contreras et al. (1998 [triangle]); Hutton et al. (2002 [triangle]); Okada & Tanaka (2002 [triangle]). For the conformational analysis of substituted thian-1-oxides, see: Freeman et al. (2001 [triangle]); Nagao et al. (1995 [triangle]). For the anti­microbial activity of aliphatic, aromatic and cyclic sulfoxides, see: Ansel et al. (2006 [triangle]); Ingold et al. (1999 [triangle]); Rouvier et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2367-scheme1.jpg

Experimental

Crystal data

  • C17H15ClO2S
  • M r = 318.81
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2367-efi2.jpg
  • a = 11.5195 (5) Å
  • b = 25.7589 (12) Å
  • c = 5.2248 (2) Å
  • V = 1550.35 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.38 mm−1
  • T = 296 (2) K
  • 0.58 × 0.35 × 0.15 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.809, T max = 0.945
  • 33450 measured reflections
  • 1954 independent reflections
  • 1551 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.211
  • S = 1.20
  • 1954 reflections
  • 106 parameters
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2; data reduction: SAINT-NT (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037355/hg2443sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037355/hg2443Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

AT thanks the UGC, India, for the award of a Minor Research Project [File No. MRP-2355/06(UGC-SERO), Link No. 2355, 10/01/2007]. RJB acknowledges the NSF–MRI program for funding to purchase the X-ray CCD diffractometer.

supplementary crystallographic information

Comment

Increasing interest has been focused on the stereochemical aspects of sulphoxides. The conformational analysis of cyclic sulphoxides is an area of attraction for many groups (Okada & Tanaka, 2002; Hutton et al., 2002; Contreras et al., 1998). Significant attention was earlier directed toward the conformational analysis of substituted thian-1-oxides (Freeman et al., 2001; Nagao et al., 1995). The conformational integrity of the sulphoxide has also generated interest in the various conditions under which it may undergo stereoisomerization. A large number of aliphatic, aromatic and cyclic sulphoxides exhibit antimicrobial activity (Ingold et al., 1999; Ansel et al., 2006; Rouvier et al., 2004). Although extensive studies on sulphoxides have disclosed their chemical and physico-chemical properties, little is known about the properties of the sulphinyl groups in cyclic sulphoxides. To investigate the conformations, substitution effect and antimicrobial activity of unsymmetrical thiopyran-4-one 1-oxides, the title compound was synthesized.

Thiruvalluvar et al., (2007) have reported a crystal structure of 2-(4-Fluorophenyl)-6-phenyltetrahydro-2H-thiopyran-4-one 1-oxide, wherein the thiopyran unit is in chair form. The molecular structure of the title compound, with atomic numbering scheme, is shown in Fig. 1. The thiopyran unit of the title molecule, C17H15ClO2S, is in the chair form. The geometry around S1 atom is tetrahedral and C4 is planar. A crystallographic mirror plane bisects the molecule, passing through the O=S and the opposite C=O atoms of the central ring. The (p-chloro)phenyl at the 2 position and the phenyl ring at the 6 position have equatorial orientations. C2—H2···O1(x, y, 1 + z) and C15—H15···Cl1(1/2 - x, -y, -1/2 + z) intermolecular hydrogen bonds forming an infinite one dimensional chain with base vector [0 0 1] are found in the crystal structure. Further, a short intermolecular O1···C4(x, y, -1 + z) contact of 2.970 (5)Å is also found in the crystal structure.

Experimental

A mixture of cis-2-(4-chlorophenyl)-6-phenyldithian-4-one (3.18 g, 0.01 mol), diethyl ether (60 ml), bromine (3.0 g) in water (30 ml) was shaken for few minutes. The solid that separated was filtered, washed with ether and recrystallized from chloroform-carbon tetrachloride mixture (1:1 v/v). The yield obtained was 68%(2.16 g).

Refinement

The structure was solved in the space group Pnma with half a molecule in the asymmetric unit. The other half is related by a mirror plane symmetry [x, 1/2 - y, z]. The s.o.f. of C14A, Cl1, C14B and H14B is 0.5 and for the remaining phenyl group atoms it is 1.00. This confirms the (p-chloro)phenyl group at 2 position and the phenyl group at 6 position. The H atoms were positioned geometrically and allowed to ride on their parent atoms with C—H = 0.93–0.98 Å and Uiso = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound with the atomic numbering and 30% probability displacement ellipsoids. The unlabelled and labelled atoms are related by mirror plane [symmetry code: x, 1/2 - y, z].
Fig. 2.
The packing of the title compound, viewed down the c axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

Crystal data

C17H15ClO2SDx = 1.366 Mg m3
Mr = 318.81Melting point: 417 K
Orthorhombic, PnmaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 9562 reflections
a = 11.5195 (5) Åθ = 3.0–24.8º
b = 25.7589 (12) ŵ = 0.38 mm1
c = 5.2248 (2) ÅT = 296 (2) K
V = 1550.35 (12) Å3Thick, colourless
Z = 40.58 × 0.35 × 0.15 mm
F000 = 664

Data collection

Bruker APEXII CCD diffractometer1954 independent reflections
Radiation source: fine-focus sealed tube1551 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.040
Detector resolution: 0 pixels mm-1θmax = 28.3º
T = 296(2) Kθmin = 1.6º
[var phi] and ω scansh = −15→15
Absorption correction: multi-scan(SADABS; Bruker, 2004)k = −34→34
Tmin = 0.809, Tmax = 0.945l = −6→6
33450 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.211  w = 1/[σ2(Fo2) + (0.0825P)2 + 1.5305P] where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max = 0.001
1954 reflectionsΔρmax = 0.32 e Å3
106 parametersΔρmin = −0.42 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cl10.0955 (4)0.00160 (11)0.0431 (9)0.1475 (18)0.500
S10.24636 (8)0.250000.27287 (17)0.0434 (3)
O10.3171 (3)0.250000.0330 (5)0.0614 (10)
O40.5597 (3)0.250000.7542 (7)0.0772 (13)
C20.3029 (3)0.19728 (12)0.4726 (5)0.0477 (9)
C30.4354 (3)0.20065 (15)0.4859 (7)0.0621 (13)
C40.4819 (3)0.250000.5959 (8)0.0581 (16)
C110.2583 (3)0.14695 (14)0.3651 (7)0.0593 (11)
C120.1618 (4)0.12411 (19)0.4657 (10)0.0873 (18)
C130.1167 (5)0.0784 (2)0.3692 (16)0.113 (3)
C14A0.1685 (7)0.0557 (2)0.1666 (16)0.112 (3)0.500
C14B0.1685 (7)0.0557 (2)0.1666 (16)0.112 (3)0.500
C150.2634 (7)0.0778 (3)0.0566 (14)0.124 (3)
C160.3087 (5)0.1234 (2)0.1524 (10)0.0940 (19)
H20.271920.201470.646030.0573*
H3A0.463770.171880.588080.0745*
H3B0.466290.196510.314390.0745*
H120.125020.139810.603940.1053*
H130.051390.063400.443210.1358*
H14B0.139100.024760.101570.1344*0.500
H150.298070.06199−0.084110.1492*
H160.373040.138540.074660.1130*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.168 (3)0.0895 (18)0.185 (4)−0.0163 (19)−0.060 (3)−0.035 (2)
S10.0328 (5)0.0708 (7)0.0265 (5)0.0000−0.0033 (3)0.0000
O10.0611 (19)0.101 (2)0.0221 (13)0.00000.0046 (13)0.0000
O40.0365 (16)0.138 (3)0.057 (2)0.0000−0.0168 (14)0.0000
C20.0413 (14)0.0715 (18)0.0304 (13)0.0054 (13)−0.0019 (11)0.0014 (12)
C30.0390 (15)0.096 (3)0.0512 (18)0.0139 (16)−0.0103 (13)−0.0018 (17)
C40.0304 (19)0.106 (4)0.038 (2)0.0000−0.0045 (16)0.0000
C110.0562 (18)0.069 (2)0.0527 (18)0.0096 (16)−0.0125 (15)0.0000 (15)
C120.063 (2)0.095 (3)0.104 (4)−0.007 (2)0.009 (2)−0.018 (3)
C130.092 (4)0.097 (4)0.150 (6)−0.019 (3)−0.005 (4)−0.004 (4)
C14A0.118 (5)0.080 (3)0.138 (5)−0.001 (3)−0.048 (4)−0.017 (3)
C14B0.118 (5)0.080 (3)0.138 (5)−0.001 (3)−0.048 (4)−0.017 (3)
C150.156 (6)0.099 (4)0.118 (5)0.008 (4)−0.006 (4)−0.045 (4)
C160.111 (4)0.094 (3)0.077 (3)−0.001 (3)0.013 (3)−0.025 (3)

Geometric parameters (Å, °)

Cl1—C14A1.751 (7)C13—C14B1.349 (11)
Cl1—C14B1.751 (7)C14A—C151.360 (11)
Cl1—H14B0.8400C14B—C151.360 (11)
S1—C21.832 (3)C15—C161.379 (9)
S1—C2i1.832 (3)C2—H20.9800
S1—O11.495 (3)C3—H3A0.9700
O4—C41.220 (5)C3—H3B0.9700
C2—C31.530 (5)C12—H120.9300
C2—C111.503 (5)C13—H130.9300
C3—C41.494 (4)C14A—H14B0.9300
C11—C121.363 (6)C14B—H14B0.9300
C11—C161.393 (6)C15—H150.9300
C12—C131.382 (8)C16—H160.9300
C13—C14A1.349 (11)
Cl1···C15ii3.645 (9)C2···O1xiv3.232 (4)
Cl1···H15iii2.8200C2···O1x3.232 (4)
S1···O4iv3.494 (4)C3···O1xiv3.412 (4)
S1···O4v3.276 (4)C3···O1x3.412 (4)
S1···C4iv3.605 (4)C4···S1xii3.605 (4)
S1···O4vi3.494 (4)C4···O1xiv2.970 (5)
S1···O4vii3.276 (4)C4···S1xv3.605 (4)
S1···C4vi3.605 (4)C4···O1x2.970 (5)
O1···O4viii3.152 (5)C12···C15xiv3.511 (9)
O1···C2viii3.232 (4)C15···C12viii3.511 (9)
O1···C3viii3.412 (4)C15···Cl1iii3.645 (9)
O1···C4viii2.970 (5)C16···O13.322 (5)
O1···C163.322 (5)C3···H162.7700
O1···C2ix3.232 (4)C16···H3B2.7500
O1···C3ix3.412 (4)H2···O1xiv2.4300
O1···O4ix3.152 (5)H2···H122.3300
O1···C16i3.322 (5)H2···O4v2.7900
O1···C4ix2.970 (5)H2···O4vii2.7900
O4···O1x3.152 (5)H2···O1x2.4300
O4···S1xi3.276 (4)H2···H2i2.5000
O4···S1xii3.494 (4)H3A···H12xi2.5900
O4···S1xiii3.276 (4)H3B···O12.6500
O4···O1xiv3.152 (5)H3B···C162.7500
O4···S1xv3.494 (4)H3B···H162.2300
O1···H3Bi2.6500H12···H22.3300
O1···H2viii2.4300H12···H3Avii2.5900
O1···H2ix2.4300H15···Cl1ii2.8200
O1···H3B2.6500H16···C32.7700
O4···H2xiii2.7900H16···H3B2.2300
O4···H2xi2.7900
C14A—Cl1—H14B8.00C11—C16—C15120.2 (5)
C14B—Cl1—H14B8.00S1—C2—H2108.00
C2—S1—C2i95.66 (14)C3—C2—H2108.00
O1—S1—C2106.48 (13)C11—C2—H2108.00
O1—S1—C2i106.48 (13)C2—C3—H3A109.00
C3—C2—C11114.0 (3)C2—C3—H3B109.00
S1—C2—C3109.8 (2)C4—C3—H3A109.00
S1—C2—C11107.8 (2)C4—C3—H3B108.00
C2—C3—C4115.0 (3)H3A—C3—H3B108.00
C3—C4—C3i116.6 (3)C11—C12—H12119.00
O4—C4—C3121.62 (19)C13—C12—H12119.00
O4—C4—C3i121.62 (19)C12—C13—H13120.00
C12—C11—C16117.4 (4)C14A—C13—H13120.00
C2—C11—C16122.1 (4)C14B—C13—H13120.00
C2—C11—C12120.5 (3)Cl1—C14A—H14B8.00
C11—C12—C13122.2 (5)C13—C14A—H14B120.00
C12—C13—C14A119.3 (6)C15—C14A—H14B120.00
C12—C13—C14B119.3 (6)Cl1—C14B—H14B8.00
Cl1—C14A—C15124.3 (6)C13—C14B—H14B120.00
Cl1—C14A—C13115.0 (6)C15—C14B—H14B120.00
C13—C14A—C15120.4 (6)C14A—C15—H15120.00
Cl1—C14B—C15124.3 (6)C14B—C15—H15120.00
C13—C14B—C15120.4 (6)C16—C15—H15120.00
Cl1—C14B—C13115.0 (6)C11—C16—H16120.00
C14A—C15—C16120.5 (7)C15—C16—H16120.00
C14B—C15—C16120.5 (7)
O1—S1—C2—C348.2 (2)C2—C11—C16—C15−178.6 (5)
O1—S1—C2—C11−76.5 (2)C12—C11—C16—C15−2.2 (7)
C2i—S1—C2—C3−60.9 (2)C11—C12—C13—C14A−0.9 (9)
C2i—S1—C2—C11174.5 (2)C11—C12—C13—C14B−0.9 (9)
S1—C2—C3—C459.9 (3)C12—C13—C14A—Cl1−174.1 (5)
C11—C2—C3—C4−179.1 (3)C12—C13—C14A—C15−0.7 (11)
S1—C2—C11—C12−96.7 (4)C12—C13—C14B—Cl1−174.1 (5)
S1—C2—C11—C1679.6 (4)C12—C13—C14B—C15−0.7 (11)
C3—C2—C11—C12141.3 (4)Cl1—C14A—C15—C16173.5 (6)
C3—C2—C11—C16−42.5 (5)C13—C14A—C15—C160.7 (11)
C2—C3—C4—O4134.6 (4)Cl1—C14B—C15—C16173.5 (6)
C2—C3—C4—C3i−50.5 (4)C13—C14B—C15—C160.7 (11)
C2—C11—C12—C13178.7 (5)C14A—C15—C16—C110.8 (10)
C16—C11—C12—C132.3 (7)C14B—C15—C16—C110.8 (10)

Symmetry codes: (i) x, −y+1/2, z; (ii) −x+1/2, −y, z−1/2; (iii) −x+1/2, −y, z+1/2; (iv) x−1/2, −y+1/2, −z+1/2; (v) x−1/2, −y+1/2, −z+3/2; (vi) x−1/2, y, −z+1/2; (vii) x−1/2, y, −z+3/2; (viii) x, y, z−1; (ix) x, −y+1/2, z−1; (x) x, −y+1/2, z+1; (xi) x+1/2, y, −z+3/2; (xii) x+1/2, −y+1/2, −z+1/2; (xiii) x+1/2, −y+1/2, −z+3/2; (xiv) x, y, z+1; (xv) x+1/2, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2···O1xiv0.982.433.232 (4)138
C15—H15···Cl1ii0.932.823.745 (9)170

Symmetry codes: (xiv) x, y, z+1; (ii) −x+1/2, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2443).

References

  • Ansel, H. C., Norred, W. P. & Roth, I. L. (2006). J. Pharm. Sci.58, 836–839. [PubMed]
  • Bruker (2004). APEX2, SAINT-NT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Contreras, J. G., Madariaga, S. T. & Alderete, J. B. (1998). J. Phys. Org. Chem.11, 392–396.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Freeman, F., Nguyen, T. & Hehre, W. (2001). J. Mol. Struct. (THEOCHEM), 549, 203–216.
  • Hutton, C. A., Jaber, R., Otaegui, M., Turnet, J. J., Turner, P., White, J. M. & Bacskay, G. B. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 1066–1071.
  • Ingold, K., Bigler, P., Thormann, W., Cavaliero, T., Gottstein, B. & Hemphill, A. (1999). Antimicrob. Agents Chemother. 43, 1052–1061. [PMC free article] [PubMed]
  • Nagao, Y., Goto, M., Kida, K. & Shiro, M. (1995). Heterocycles, 41, 419–424.
  • Okada, K. & Tanaka, M. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 2704–2711.
  • Rouvier, C. S., Barret, J. M., Farrell, C. M., Sharples, D., Hill, B. T. & Barbe, J. (2004). Eur. J. Med. Chem.39, 1029–1038. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Thiruvalluvar, A., Balamurugan, S., Butcher, R. J., Pandiarajan, K. & Devanathan, D. (2007). Acta Cryst. E63, o4486.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography