PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2452.
Published online 2008 November 26. doi:  10.1107/S160053680803897X
PMCID: PMC2959855

Bis(acetophenone oxime) O,O′-methyl­ene ether

Abstract

In the mol­ecule of the title compound, C17H18N2O2, the dihedral angle between the aromatic rings is 74.26 (3)°. The oxime units are oriented at dihedral angles of 7.66 (3) and 33.06 (3)° with respect to the adjacent rings, and they have E configurations about the C=N bonds.

Related literature

For general background on oximes and their varied applications, see: Jones et al. (1961 [triangle]); Schrauzer & Kohnle (1964 [triangle]); Hashemi et al. (2006 [triangle]); Ghiasvand et al. (2004 [triangle], 2005 [triangle]); Kakanejadifard et al. (2007 [triangle]); Otsuka Pharmaceutical Co Ltd (1981 [triangle]); Chertanova et al. (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2452-scheme1.jpg

Experimental

Crystal data

  • C17H18N2O2
  • M r = 282.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2452-efi1.jpg
  • a = 9.875 (2) Å
  • b = 8.8409 (18) Å
  • c = 17.290 (4) Å
  • β = 101.13 (3)°
  • V = 1481.1 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 113 (2) K
  • 0.14 × 0.04 × 0.04 mm

Data collection

  • Rigaku Saturn diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005 [triangle]) T min = 0.988, T max = 0.997
  • 9665 measured reflections
  • 2612 independent reflections
  • 1724 reflections with I > 2σ(I)
  • R int = 0.104

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.097
  • S = 0.96
  • 2612 reflections
  • 193 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680803897X/hk2580sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803897X/hk2580Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Tianjin Natural Science Foundation (grant No. 07JCYBJC02200) for financial support.

supplementary crystallographic information

Comment

Some oximes are widely used for various purposes in organic, inorganic, bioinorganic, pigment, analytical, dyes and medical chemistry (Jones et al., 1961; Schrauzer & Kohnle, 1964; Hashemi et al., 2006; Ghiasvand et al., 2004; Ghiasvand et al., 2005; Kakanejadifard et al., 2007). Methylene dioximes are important chemicals useful as metal capturers, and antiinflammatory and antibacterial agents (Otsuka Pharmaceutical Co Ltd, 1981). We report herein the synthesis and crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths and angles are within normal ranges. Rings A (C1-C6) and B (C12-C17) are, of course, planar, and they are oriented at a dihedral angle of 74.26 (3)°. The (C1-C7-N1-O1) and (C12/C10/N2/O2) moieties are oriented with respect to the adjacent rings at dihedral angles of 7.66 (3)° and 33.06 (3)°, respectively. The oxime moieties have E configurations [C1-C7-N1-O1 178.38 (12)° and C12-C10-N2-O2 179.02 (10)°; Chertanova et al., 1994].

Experimental

For the preparation of the title compound, the acetophenone oxime (0.5 mmol) was dissolved in dichloromethane (3.5 ml). [bmim]BF4 (0.2269 g, 0.1 mmol) and sodium hydroxide (0.167 g) were added. The reaction mixture was stirred at room temperature for 30 min. The mixture was washed with water (10 ml) and extracted with CH2Cl2 (15 ml). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and evaporated to dryness in vacuo. The product was purified by chromatography on silica (200–300 mesh). Elution with a mixture of petroleum ether and ethyl acetate [1/20(v/v)] afforded the methylene dioxime. Crystals suitable for X-ray analysis were obtained by slow evaporation of a water solution.

Refinement

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å, respectively for aromatic, methylene and methyl H atoms, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C17H18N2O2F000 = 600
Mr = 282.33Dx = 1.266 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2756 reflections
a = 9.875 (2) Åθ = 2.4–27.5º
b = 8.8409 (18) ŵ = 0.08 mm1
c = 17.290 (4) ÅT = 113 (2) K
β = 101.13 (3)ºPrism, colorless
V = 1481.1 (6) Å30.14 × 0.04 × 0.04 mm
Z = 4

Data collection

Rigaku Saturn diffractometer2612 independent reflections
Radiation source: rotating anode1724 reflections with I > 2σ(I)
Monochromator: confocalRint = 0.105
T = 113(2) Kθmax = 25.0º
ω scansθmin = 2.2º
Absorption correction: multi-scan(CrystalClear; Rigaku/MSC, 2005)h = −11→11
Tmin = 0.988, Tmax = 0.997k = −9→10
9665 measured reflectionsl = −20→16

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045  w = 1/[σ2(Fo2) + (0.0345P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.097(Δ/σ)max = 0.001
S = 0.96Δρmax = 0.23 e Å3
2612 reflectionsΔρmin = −0.19 e Å3
193 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.016 (2)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.36208 (10)0.65077 (13)0.02442 (6)0.0284 (3)
O20.14145 (11)0.61984 (13)0.05282 (6)0.0284 (4)
N10.39081 (13)0.79925 (17)0.05526 (7)0.0270 (4)
N20.15155 (13)0.46386 (16)0.07470 (8)0.0257 (4)
C10.55638 (16)0.9740 (2)0.11238 (8)0.0247 (4)
C20.45724 (17)1.0888 (2)0.10304 (9)0.0274 (5)
H20.36751.06760.07740.033*
C30.48996 (17)1.2324 (2)0.13110 (9)0.0315 (5)
H30.42231.30700.12460.038*
C40.62333 (18)1.2665 (2)0.16904 (9)0.0357 (5)
H40.64571.36360.18790.043*
C50.72255 (18)1.1545 (2)0.17853 (10)0.0360 (5)
H50.81211.17650.20410.043*
C60.69013 (17)1.0102 (2)0.15045 (9)0.0328 (5)
H60.75830.93620.15700.039*
C70.52021 (16)0.8199 (2)0.08160 (9)0.0251 (4)
C80.62975 (17)0.7028 (2)0.08213 (10)0.0362 (5)
H8A0.58910.61280.05650.054*
H8B0.67210.67970.13560.054*
H8C0.69830.74080.05460.054*
C90.21947 (16)0.6427 (2)−0.00642 (9)0.0283 (5)
H9A0.20200.5603−0.04410.034*
H9B0.18990.7358−0.03430.034*
C100.09103 (15)0.4381 (2)0.13271 (9)0.0231 (4)
C110.02188 (17)0.5564 (2)0.17390 (10)0.0329 (5)
H11A0.08830.60060.21570.049*
H11B−0.05090.51070.19540.049*
H11C−0.01590.63370.13690.049*
C120.09387 (15)0.2791 (2)0.15882 (9)0.0241 (4)
C130.09137 (16)0.1598 (2)0.10568 (9)0.0278 (5)
H130.08760.18040.05260.033*
C140.09444 (16)0.0116 (2)0.13108 (10)0.0324 (5)
H140.0931−0.06700.09520.039*
C150.09958 (16)−0.0200 (2)0.20996 (10)0.0327 (5)
H150.1010−0.11990.22690.039*
C160.10255 (16)0.0964 (2)0.26369 (10)0.0303 (5)
H160.10650.07510.31670.036*
C170.09954 (15)0.2444 (2)0.23818 (9)0.0265 (5)
H170.10130.32240.27440.032*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0275 (7)0.0271 (9)0.0310 (7)0.0022 (6)0.0069 (5)−0.0017 (5)
O20.0292 (7)0.0262 (9)0.0310 (7)0.0010 (6)0.0085 (5)0.0017 (5)
N10.0287 (8)0.0268 (10)0.0262 (8)0.0008 (7)0.0071 (6)0.0000 (6)
N20.0248 (8)0.0211 (10)0.0305 (8)−0.0004 (7)0.0031 (6)0.0003 (7)
C10.0231 (9)0.0314 (13)0.0209 (9)0.0014 (9)0.0073 (7)0.0047 (8)
C20.0244 (9)0.0333 (13)0.0246 (9)−0.0004 (9)0.0050 (7)−0.0009 (8)
C30.0325 (10)0.0335 (14)0.0296 (10)0.0025 (9)0.0085 (8)0.0005 (8)
C40.0412 (12)0.0374 (14)0.0286 (10)−0.0098 (10)0.0073 (8)0.0012 (9)
C50.0265 (10)0.0471 (16)0.0328 (11)−0.0084 (10)0.0018 (8)0.0047 (9)
C60.0252 (10)0.0420 (15)0.0317 (10)0.0013 (9)0.0070 (7)0.0069 (9)
C70.0250 (9)0.0308 (12)0.0205 (9)0.0053 (8)0.0068 (7)0.0052 (8)
C80.0293 (10)0.0370 (14)0.0416 (11)0.0072 (9)0.0051 (8)0.0005 (9)
C90.0278 (10)0.0332 (13)0.0236 (10)−0.0026 (8)0.0044 (8)0.0017 (8)
C100.0173 (9)0.0276 (12)0.0237 (9)−0.0008 (8)0.0024 (7)−0.0040 (8)
C110.0334 (10)0.0299 (13)0.0369 (10)0.0031 (9)0.0100 (8)−0.0027 (8)
C120.0167 (9)0.0258 (12)0.0294 (10)−0.0002 (8)0.0038 (7)−0.0014 (8)
C130.0255 (10)0.0300 (14)0.0288 (10)−0.0012 (9)0.0075 (7)−0.0028 (8)
C140.0301 (10)0.0265 (13)0.0411 (11)0.0014 (9)0.0082 (8)−0.0058 (9)
C150.0252 (10)0.0278 (13)0.0440 (11)0.0011 (9)0.0037 (8)0.0050 (9)
C160.0254 (10)0.0332 (14)0.0310 (10)−0.0004 (9)0.0023 (8)0.0044 (9)
C170.0203 (9)0.0278 (13)0.0309 (10)−0.0008 (8)0.0041 (7)−0.0059 (8)

Geometric parameters (Å, °)

O1—C91.4081 (17)C8—H8B0.9600
O1—N11.4246 (17)C8—H8C0.9600
O2—C91.4100 (19)C9—H9A0.9700
O2—N21.4283 (17)C9—H9B0.9700
N1—C71.2842 (19)C10—C121.476 (2)
N2—C101.283 (2)C10—C111.502 (2)
C1—C61.394 (2)C11—H11A0.9600
C1—C21.397 (2)C11—H11B0.9600
C1—C71.481 (2)C11—H11C0.9600
C2—C31.375 (2)C12—C131.396 (2)
C2—H20.9300C12—C171.397 (2)
C3—C41.386 (2)C13—C141.381 (2)
C3—H30.9300C13—H130.9300
C4—C51.380 (2)C14—C151.383 (2)
C4—H40.9300C14—H140.9300
C5—C61.381 (2)C15—C161.383 (2)
C5—H50.9300C15—H150.9300
C6—H60.9300C16—C171.379 (2)
C7—C81.496 (2)C16—H160.9300
C8—H8A0.9600C17—H170.9300
C9—O1—N1107.51 (12)O1—C9—H9A109.1
C9—O2—N2108.10 (12)O2—C9—H9A109.1
C7—N1—O1112.12 (13)O1—C9—H9B109.1
C10—N2—O2111.03 (14)O2—C9—H9B109.1
C6—C1—C2117.83 (17)H9A—C9—H9B107.9
C6—C1—C7121.41 (15)N2—C10—C12115.07 (16)
C2—C1—C7120.75 (14)N2—C10—C11124.78 (17)
C3—C2—C1121.18 (15)C12—C10—C11120.15 (16)
C3—C2—H2119.4C10—C11—H11A109.5
C1—C2—H2119.4C10—C11—H11B109.5
C2—C3—C4120.31 (17)H11A—C11—H11B109.5
C2—C3—H3119.8C10—C11—H11C109.5
C4—C3—H3119.8H11A—C11—H11C109.5
C5—C4—C3119.23 (18)H11B—C11—H11C109.5
C5—C4—H4120.4C13—C12—C17118.25 (17)
C3—C4—H4120.4C13—C12—C10121.45 (16)
C4—C5—C6120.65 (16)C17—C12—C10120.30 (15)
C4—C5—H5119.7C14—C13—C12120.74 (16)
C6—C5—H5119.7C14—C13—H13119.6
C5—C6—C1120.80 (17)C12—C13—H13119.6
C5—C6—H6119.6C13—C14—C15119.97 (17)
C1—C6—H6119.6C13—C14—H14120.0
N1—C7—C1114.38 (15)C15—C14—H14120.0
N1—C7—C8124.93 (16)C16—C15—C14120.26 (18)
C1—C7—C8120.69 (14)C16—C15—H15119.9
C7—C8—H8A109.5C14—C15—H15119.9
C7—C8—H8B109.5C17—C16—C15119.67 (17)
H8A—C8—H8B109.5C17—C16—H16120.2
C7—C8—H8C109.5C15—C16—H16120.2
H8A—C8—H8C109.5C16—C17—C12121.11 (16)
H8B—C8—H8C109.5C16—C17—H17119.4
O1—C9—O2112.27 (12)C12—C17—H17119.4
C9—O1—N1—C7−176.97 (13)N1—O1—C9—O2−79.77 (15)
C9—O2—N2—C10175.14 (11)N2—O2—C9—O1−78.02 (14)
C6—C1—C2—C3−0.6 (2)O2—N2—C10—C12179.02 (10)
C7—C1—C2—C3−179.71 (15)O2—N2—C10—C11−1.56 (19)
C1—C2—C3—C40.4 (3)N2—C10—C12—C13−32.7 (2)
C2—C3—C4—C5−0.2 (3)C11—C10—C12—C13147.83 (15)
C3—C4—C5—C60.2 (3)N2—C10—C12—C17147.12 (15)
C4—C5—C6—C1−0.4 (3)C11—C10—C12—C17−32.3 (2)
C2—C1—C6—C50.6 (2)C17—C12—C13—C140.0 (2)
C7—C1—C6—C5179.70 (16)C10—C12—C13—C14179.83 (14)
O1—N1—C7—C1178.38 (12)C12—C13—C14—C150.2 (2)
O1—N1—C7—C8−1.2 (2)C13—C14—C15—C16−0.4 (2)
C6—C1—C7—N1173.26 (15)C14—C15—C16—C170.4 (2)
C2—C1—C7—N1−7.7 (2)C15—C16—C17—C12−0.2 (2)
C6—C1—C7—C8−7.1 (2)C13—C12—C17—C160.0 (2)
C2—C1—C7—C8171.95 (15)C10—C12—C17—C16−179.87 (14)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2580).

References

  • Chertanova, L., Pascard, C. & Sheremetev, A. (1994). Acta Cryst. B50, 708–716.
  • Ghiasvand, A. R., Ghaderi, R. & Kakanejadifard, A. (2004). Talanta, 62, 287–292. [PubMed]
  • Ghiasvand, A. R., Shadabi, S., Kakanejadifard, A. & Khajehkolaki, A. (2005). Bull. Korean Chem. Soc.26, 781–785.
  • Hashemi, P., Rahmani, Z., Kakanejadifard, A. & Niknam, E. (2006). Anal. Sci.21, 1297–1301. [PubMed]
  • Jones, M. E. B., Thornton, D. A. & Webb, R. F. (1961). Makromol. Chem.49, 62–66.
  • Kakanejadifard, A., Niknam, E., Ranjbar, B. & Naderi-Manesh, H. (2007). Synth. Commun.37, 2753–2756.
  • Otsuka Pharmaceutical Co Ltd (1981). Jpn Kokai Tokyo Koho JP, 81 108 757.
  • Rigaku/MSC (2005). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  • Schrauzer, G. N. & Kohnle, J. (1964). Chem. Ber.97, 3056–3063.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography