PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2341.
Published online 2008 November 13. doi:  10.1107/S1600536808037069
PMCID: PMC2959853

(E)-N′-(5-Bromo-2-hydroxy­benzyl­idene)-p-toluene­sulfonohydrazide

Abstract

The title compound, C14H13BrN2O3S, features an intra­molecular O—H(...)N hydrogen bond which generates an S(6) ring motif. The dihedral angle between the two benzene rings is 86.47 (6)°. Inter­molecular N—H(...)O and C—H(...)O inter­actions link neighbouring mol­ecules via R 2 2(13) ring motifs, forming one-dimensional extended chains along the c axis.

Related literature

For background to sulfonamides, see: Kayser et al. (2004 [triangle]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For related structures and applications see: Tabatabaee et al. (2007 [triangle]); Mehrabi et al. (2008 [triangle]); Ali et al. (2007 [triangle]); Tierney et al. (2006 [triangle]); Krygowski et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2341-scheme1.jpg

Experimental

Crystal data

  • C14H13BrN2O3S
  • M r = 369.23
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2341-efi1.jpg
  • a = 15.8890 (3) Å
  • b = 9.8502 (2) Å
  • c = 9.8702 (2) Å
  • β = 105.475 (1)°
  • V = 1488.78 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.91 mm−1
  • T = 100.0 (1) K
  • 0.45 × 0.34 × 0.31 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.308, T max = 0.407
  • 41486 measured reflections
  • 7057 independent reflections
  • 5961 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.079
  • S = 1.06
  • 7057 reflections
  • 199 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.28 e Å−3
  • Δρmin = −0.59 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037069/tk2325sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037069/tk2325Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK thanks PNU for financial support.

supplementary crystallographic information

Comment

Sulfonamides were the first class of antimicrobial agents to be discovered. They inhibit dihydropteroate synthetase in the bacterial folic acid pathway. Although their clinical role has diminished, they are still useful in certain situations, because of their efficacy and low cost (Krygowski et al., 1998). Sulfonamides (e.g. sulfanilamide, sulfamethoxazole, sulfafurazole) are structural analogues of p-aminobenzoic acid (PABA) and compete with PABA to block its conversion to dihydrofolic acid. These agents are generally used in combination with other drugs to prevent or treat a number of bacterial and parasitic infections (Tierney et al., 2006). With regard to all of the above, we report herein the crystal structure of the title compound, (I).

Bond lengths and angles in (I), Fig. 1, are comparable with those in related structures (Mehrabi et al., 2008; Ali et al. 2007). An intramolecular O—H···N hydrogen bond is noted which generates a S(6) ring motif. The two benzene rings make the dihedral angle of 86.47 (6)°. Intermolecular N—H···O and C—H···O interactions link neighbouring molecules via R22(13) ring motifs to form 1-D extended chains along the c-axis, Fig. 2 and Table 1. The crystal structure is further stabilized by intermolecular N—H···O, C—H···Br, C—H···O and π···π [Cg1···Cg1 = 3.9548 (8) Å; symmetry code: 2 - x, 1 - y, 2 - z] interactions.

Experimental

p-Tosylhydrazine (2 mmol) was added to a refluxing ethanolic solution (50 ml) of 5-bromosalicylaldehyde (2 mmol). The mixture was stirred for 2 h. After cooling, the colorless crystalline solid was isolated by filtration, washed with cold ethanol, and recrystallized from an ethanol solution of (I).

Refinement

H atoms bound to O1 and N2 were located from a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and refined as riding model with C—H = 0.93 - 0.96 Å, and with Uiso(H) = 1.2-1.5Ueq(C). A rotating group model was used for the methyl group. The highest residual electron density peak (1.28 eÅ-3) was located 0.64 Å from Br1 and the deepest hole (-0.59 eÅ-3) was located 0.59 Å from Br1.

Figures

Fig. 1.
The molecular structure of (I), showing 50% displacement ellipsoids and the atomic numbering. The intramolecular hydrogen bond is shown as a dashed line.
Fig. 2.
The crystal packing of (I) viewed down the b-axis, showing 1-D extended chains along the c-axis through N—H···O hydrogen bonding. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C14H13BrN2O3SF000 = 744
Mr = 369.23Dx = 1.647 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9995 reflections
a = 15.8890 (3) Åθ = 2.5–37.4º
b = 9.8502 (2) ŵ = 2.91 mm1
c = 9.8702 (2) ÅT = 100 (1) K
β = 105.475 (1)ºBlock, colourless
V = 1488.78 (5) Å30.45 × 0.34 × 0.31 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer7057 independent reflections
Radiation source: fine-focus sealed tube5961 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.035
T = 100(1) Kθmax = 36.0º
[var phi] and ω scansθmin = 1.3º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −26→25
Tmin = 0.308, Tmax = 0.407k = −16→16
41486 measured reflectionsl = −16→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079  w = 1/[σ2(Fo2) + (0.0378P)2 + 0.5647P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.003
7057 reflectionsΔρmax = 1.28 e Å3
199 parametersΔρmin = −0.59 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br11.191754 (8)0.636650 (14)1.149579 (15)0.02941 (4)
S10.645085 (17)0.74186 (3)0.60027 (3)0.01571 (5)
O10.91105 (6)0.56509 (11)0.60615 (10)0.02610 (17)
O20.67053 (6)0.78504 (9)0.47792 (9)0.02295 (16)
O30.57441 (5)0.80755 (8)0.63807 (9)0.02088 (15)
N10.80775 (6)0.71072 (9)0.72484 (10)0.01769 (15)
N20.73002 (6)0.77064 (9)0.73584 (10)0.01728 (15)
C10.97310 (8)0.58383 (12)0.72937 (13)0.02124 (19)
C21.05653 (9)0.53277 (14)0.74093 (15)0.0272 (2)
H2A1.06830.48780.66520.033*
C31.12225 (8)0.54873 (14)0.86523 (15)0.0279 (2)
H3A1.17780.51440.87290.033*
C41.10429 (8)0.61625 (12)0.97777 (14)0.0237 (2)
C51.02200 (8)0.66843 (12)0.96797 (13)0.02211 (19)
H5A1.01100.71381.04410.027*
C60.95532 (7)0.65296 (11)0.84359 (12)0.01914 (18)
C70.86985 (7)0.70900 (11)0.83885 (12)0.01990 (18)
H7A0.86000.74450.92060.024*
C80.62834 (7)0.56588 (10)0.59177 (11)0.01615 (16)
C90.66712 (8)0.48649 (11)0.50865 (12)0.02087 (19)
H9A0.69830.52650.45180.025*
C100.65842 (8)0.34621 (11)0.51211 (13)0.0223 (2)
H10A0.68410.29240.45670.027*
C110.61190 (7)0.28427 (11)0.59702 (12)0.01949 (18)
C120.57195 (8)0.36678 (11)0.67689 (13)0.02032 (18)
H12A0.53930.32710.73180.024*
C130.58016 (7)0.50714 (11)0.67562 (12)0.01874 (17)
H13A0.55390.56120.73000.022*
C140.60620 (9)0.13240 (11)0.60308 (15)0.0257 (2)
H14A0.62300.09350.52500.039*
H14B0.54730.10630.59860.039*
H14C0.64460.10030.68940.039*
H1N20.7171 (12)0.7519 (19)0.812 (2)0.027 (4)*
H1O10.8634 (18)0.596 (3)0.615 (3)0.057 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.01916 (6)0.02972 (7)0.03454 (8)−0.00490 (4)−0.00119 (5)0.00973 (5)
S10.01756 (10)0.01561 (10)0.01476 (10)0.00098 (7)0.00568 (8)0.00033 (7)
O10.0248 (4)0.0345 (5)0.0198 (4)0.0064 (3)0.0074 (3)0.0009 (3)
O20.0322 (4)0.0216 (3)0.0178 (4)0.0002 (3)0.0114 (3)0.0031 (3)
O30.0191 (3)0.0196 (3)0.0246 (4)0.0042 (3)0.0069 (3)−0.0005 (3)
N10.0164 (4)0.0173 (3)0.0206 (4)0.0000 (3)0.0071 (3)0.0001 (3)
N20.0165 (4)0.0191 (4)0.0171 (4)−0.0003 (3)0.0059 (3)−0.0025 (3)
C10.0217 (5)0.0216 (4)0.0217 (5)0.0026 (4)0.0081 (4)0.0037 (4)
C20.0245 (5)0.0295 (5)0.0305 (6)0.0072 (4)0.0122 (5)0.0035 (5)
C30.0208 (5)0.0282 (5)0.0359 (7)0.0051 (4)0.0095 (5)0.0075 (5)
C40.0172 (4)0.0233 (5)0.0290 (6)−0.0010 (4)0.0035 (4)0.0069 (4)
C50.0189 (5)0.0213 (4)0.0251 (5)−0.0017 (4)0.0042 (4)0.0007 (4)
C60.0178 (4)0.0181 (4)0.0218 (5)0.0002 (3)0.0057 (4)0.0017 (3)
C70.0181 (4)0.0199 (4)0.0219 (5)−0.0005 (3)0.0057 (4)−0.0023 (4)
C80.0168 (4)0.0161 (4)0.0154 (4)−0.0003 (3)0.0040 (3)−0.0008 (3)
C90.0253 (5)0.0193 (4)0.0211 (5)−0.0006 (4)0.0114 (4)−0.0023 (4)
C100.0263 (5)0.0184 (4)0.0238 (5)0.0005 (4)0.0094 (4)−0.0037 (4)
C110.0181 (4)0.0174 (4)0.0209 (5)−0.0002 (3)0.0015 (4)0.0004 (3)
C120.0187 (4)0.0201 (4)0.0228 (5)−0.0018 (3)0.0067 (4)0.0016 (4)
C130.0175 (4)0.0197 (4)0.0205 (4)−0.0001 (3)0.0075 (3)−0.0002 (3)
C140.0291 (6)0.0171 (4)0.0286 (6)−0.0001 (4)0.0035 (5)0.0009 (4)

Geometric parameters (Å, °)

Br1—C41.8947 (13)C5—H5A0.9300
S1—O31.4292 (8)C6—C71.4551 (16)
S1—O21.4363 (9)C7—H7A0.9300
S1—N21.6518 (10)C8—C91.3907 (15)
S1—C81.7524 (10)C8—C131.3943 (15)
O1—C11.3585 (16)C9—C101.3900 (16)
O1—H1O10.84 (3)C9—H9A0.9300
N1—C71.2837 (15)C10—C111.3971 (17)
N1—N21.3989 (13)C10—H10A0.9300
N2—H1N20.852 (19)C11—C121.3972 (16)
C1—C21.3937 (17)C11—C141.5008 (16)
C1—C61.4087 (16)C12—C131.3891 (15)
C2—C31.392 (2)C12—H12A0.9300
C2—H2A0.9300C13—H13A0.9300
C3—C41.388 (2)C14—H14A0.9600
C3—H3A0.9300C14—H14B0.9600
C4—C51.3840 (17)C14—H14C0.9600
C5—C61.3995 (17)
O3—S1—O2120.16 (5)C1—C6—C7122.85 (11)
O3—S1—N2103.88 (5)N1—C7—C6121.72 (10)
O2—S1—N2106.13 (5)N1—C7—H7A119.1
O3—S1—C8109.91 (5)C6—C7—H7A119.1
O2—S1—C8109.02 (5)C9—C8—C13121.11 (10)
N2—S1—C8106.82 (5)C9—C8—S1119.93 (8)
C1—O1—H1O1108.2 (18)C13—C8—S1118.85 (8)
C7—N1—N2115.19 (9)C10—C9—C8118.81 (10)
N1—N2—S1114.34 (7)C10—C9—H9A120.6
N1—N2—H1N2113.8 (13)C8—C9—H9A120.6
S1—N2—H1N2110.0 (13)C9—C10—C11121.39 (10)
O1—C1—C2118.13 (11)C9—C10—H10A119.3
O1—C1—C6121.98 (10)C11—C10—H10A119.3
C2—C1—C6119.89 (12)C10—C11—C12118.51 (10)
C3—C2—C1120.33 (12)C10—C11—C14120.42 (11)
C3—C2—H2A119.8C12—C11—C14121.07 (11)
C1—C2—H2A119.8C13—C12—C11121.06 (10)
C4—C3—C2119.57 (11)C13—C12—H12A119.5
C4—C3—H3A120.2C11—C12—H12A119.5
C2—C3—H3A120.2C12—C13—C8119.09 (10)
C5—C4—C3120.94 (12)C12—C13—H13A120.5
C5—C4—Br1118.48 (10)C8—C13—H13A120.5
C3—C4—Br1120.58 (9)C11—C14—H14A109.5
C4—C5—C6120.05 (12)C11—C14—H14B109.5
C4—C5—H5A120.0H14A—C14—H14B109.5
C6—C5—H5A120.0C11—C14—H14C109.5
C5—C6—C1119.22 (11)H14A—C14—H14C109.5
C5—C6—C7117.93 (10)H14B—C14—H14C109.5
C7—N1—N2—S1−166.98 (8)C5—C6—C7—N1173.17 (11)
O3—S1—N2—N1177.80 (7)C1—C6—C7—N1−7.24 (17)
O2—S1—N2—N1−54.59 (9)O3—S1—C8—C9155.48 (9)
C8—S1—N2—N161.63 (8)O2—S1—C8—C921.84 (11)
O1—C1—C2—C3−179.66 (12)N2—S1—C8—C9−92.44 (10)
C6—C1—C2—C30.54 (19)O3—S1—C8—C13−28.24 (10)
C1—C2—C3—C4−0.2 (2)O2—S1—C8—C13−161.87 (9)
C2—C3—C4—C5−0.25 (19)N2—S1—C8—C1383.85 (9)
C2—C3—C4—Br1178.81 (10)C13—C8—C9—C10−1.12 (18)
C3—C4—C5—C60.31 (18)S1—C8—C9—C10175.08 (9)
Br1—C4—C5—C6−178.78 (9)C8—C9—C10—C11−0.07 (19)
C4—C5—C6—C10.06 (17)C9—C10—C11—C121.54 (18)
C4—C5—C6—C7179.67 (11)C9—C10—C11—C14−177.72 (12)
O1—C1—C6—C5179.73 (11)C10—C11—C12—C13−1.87 (18)
C2—C1—C6—C5−0.48 (17)C14—C11—C12—C13177.39 (11)
O1—C1—C6—C70.14 (17)C11—C12—C13—C80.73 (18)
C2—C1—C6—C7179.92 (11)C9—C8—C13—C120.80 (17)
N2—N1—C7—C6−178.58 (10)S1—C8—C13—C12−175.44 (9)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H1N2···O2i0.851 (19)2.002 (19)2.8476 (13)172.4 (19)
O1—H1O1···N10.84 (3)1.94 (3)2.6740 (14)146 (3)
C7—H7A···O1i0.932.603.3793 (15)142
C10—H10A···Br1ii0.932.913.8082 (12)164
C12—H12A···O3iii0.932.493.3691 (15)158

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x+2, y−1/2, −z+3/2; (iii) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2325).

References

  • Ali, H. M., Laila, M., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1617–o1618.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kayser, F. H., Bienz, K. A., Eckert, J. & Zinkernagel, R. M. (2004). Medical Microbiology, pp. 1–20. Berlin: Thieme Medical.
  • Krygowski, T. M., Pietka, E., Anulewicz, R., Cyranski, M. K. & Nowacki, J. (1998). Tetrahedron, 54, 12289–12292.
  • Mehrabi, H., Kia, R., Hassanzadeh, A., Ghobadi, S. & Khavasi, H. R. (2008). Acta Cryst. E64, o1845. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Tabatabaee, M., Anari-Abbasnejad, M., Nozari, N., Sadegheian, S. & Ghasemzadeh, M. (2007). Acta Cryst. E63, o2099–o2100.
  • Tierney, M., McPhee, S. Jr & Papadakis, M. A. (2006). Current Medical Diagnosis & Treatment, 45th ed., pp. 1–50. New York: McGraw–Hill Medical.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography