PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2423.
Published online 2008 November 22. doi:  10.1107/S1600536808038798
PMCID: PMC2959847

1,4-Diphenyl­butane-1,4-dione

Abstract

The asymmetric unit of the title compound, C16H14O2, contains one half-mol­ecule, located on a twofold rotation axis. In the mol­ecule, the two benzene rings form a dihedral angle of 72.28 (2)°.

Related literature

For useful applications of 1,4-dicarbonyl compounds, see: Chiu & Sammes (1990 [triangle]); Greatrex et al. (2003 [triangle]); Nagarajan & Shechter (1984 [triangle]). For details of the synthesis, see Nevar et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2423-scheme1.jpg

Experimental

Crystal data

  • C16H14O2
  • M r = 238.27
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2423-efi1.jpg
  • a = 8.3781 (13) Å
  • b = 14.161 (2) Å
  • c = 5.3186 (8) Å
  • V = 631.00 (17) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 298 (2) K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997 [triangle]) T min = 0.984, T max = 0.992
  • 4063 measured reflections
  • 762 independent reflections
  • 640 reflections with I > 2σ(I)
  • R int = 0.163

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.129
  • S = 1.05
  • 762 reflections
  • 83 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808038798/cv2479sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038798/cv2479Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author is grateful to Ling Fan for a valuable discussion.

supplementary crystallographic information

Comment

1,4-Dicarbonyl compounds constitute key intermediates in various natural product syntheses, and they are important synthetic precursors of cyclopentenones, cyclopenta-1,3-diones, butenolides, and derivatives of furan and pyrrole (Chiu & Sammes, 1990; Greatrex et al., 2003; Nagarajan & Shechter, 1984). Herewith we present the title compound (I) (Fig. 1). The asymmetric unit of (I) contains a half of the molecule located on a twofold rotational axis. Two benzene rings form a dihedral angle of 72.28 (2)°.

Experimental

The title compound was synthesized as previously described by Nevar et al. (2000). Colourless crystals suitable for X-ray data collection were obtained by slow evaporation of a 1:3 ratio EtOAc:cyclohexane solution at room temperture.

Refinement

All H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding, allowing for free rotation of the methyl groups. The constraint Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) (methyl C) was applied. In the absence of anomalous scatterers, no attempt was made to establish the absolute configuration of the title compound, and 488 Friedel pairs were merged before the final refinement.

Figures

Fig. 1.
View of the title molecule showing the atom-labelling scheme. The displacement ellipsoids are drawn at the 30% probability level [symmetry code: (a) -x, -y + 1, z].

Crystal data

C16H14O2F000 = 252
Mr = 238.27Dx = 1.254 Mg m3
Orthorhombic, P21212Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 1423 reflections
a = 8.3781 (13) Åθ = 2.8–22.3º
b = 14.161 (2) ŵ = 0.08 mm1
c = 5.3186 (8) ÅT = 298 (2) K
V = 631.00 (17) Å3Block, colourless
Z = 20.20 × 0.10 × 0.10 mm

Data collection

Bruker SMART CCD area-detector diffractometer762 independent reflections
Radiation source: fine-focus sealed tube640 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.163
T = 298(2) Kθmax = 26.0º
[var phi] and ω scansθmin = 2.8º
Absorption correction: multi-scan(SADABS; Sheldrick, 1997)h = −10→9
Tmin = 0.984, Tmax = 0.992k = −16→17
4063 measured reflectionsl = −6→6

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.129  w = 1/[σ2(Fo2) + (0.0734P)2] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.012
762 reflectionsΔρmax = 0.20 e Å3
83 parametersΔρmin = −0.22 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.1095 (3)0.30567 (15)0.2151 (4)0.0508 (6)
C70.1070 (3)0.40988 (16)0.1653 (5)0.0574 (7)
C40.1208 (3)0.11385 (19)0.3179 (6)0.0699 (7)
H40.12410.04960.35320.084*
C80.0072 (4)0.44647 (16)−0.0468 (5)0.0670 (7)
H8A−0.09860.4191−0.03540.080*
H8B0.05400.4263−0.20470.080*
C30.2031 (3)0.17678 (17)0.4670 (5)0.0704 (8)
H30.26250.15480.60260.085*
C60.0283 (3)0.24197 (17)0.0654 (5)0.0608 (7)
H6−0.03070.2634−0.07130.073*
C20.1980 (3)0.27214 (16)0.4163 (5)0.0608 (7)
H20.25410.31420.51760.073*
O10.1843 (3)0.46221 (13)0.2966 (5)0.0984 (8)
C50.0345 (3)0.14619 (18)0.1188 (6)0.0712 (8)
H5−0.02060.10370.01770.085*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0464 (11)0.0571 (13)0.0490 (11)0.0054 (10)0.0025 (10)−0.0053 (10)
C70.0558 (13)0.0561 (13)0.0603 (14)0.0011 (11)−0.0034 (12)−0.0105 (11)
C40.0636 (15)0.0595 (13)0.0867 (18)0.0061 (13)0.0053 (15)0.0043 (15)
C80.0839 (17)0.0614 (14)0.0555 (13)0.0048 (13)−0.0040 (14)−0.0074 (11)
C30.0658 (16)0.0769 (17)0.0686 (16)0.0155 (14)−0.0023 (15)0.0091 (15)
C60.0613 (14)0.0604 (13)0.0607 (13)−0.0011 (11)−0.0092 (13)−0.0065 (12)
C20.0560 (14)0.0676 (14)0.0589 (14)0.0046 (12)−0.0060 (12)−0.0094 (12)
O10.1149 (17)0.0632 (11)0.1172 (17)−0.0067 (11)−0.0544 (16)−0.0120 (12)
C50.0696 (17)0.0597 (14)0.0843 (17)−0.0059 (13)−0.0060 (16)−0.0117 (14)

Geometric parameters (Å, °)

C1—C61.382 (3)C8—H8A0.9700
C1—C21.386 (3)C8—H8B0.9700
C1—C71.499 (3)C3—C21.378 (3)
C7—O11.207 (3)C3—H30.9300
C7—C81.496 (3)C6—C51.387 (4)
C4—C51.361 (4)C6—H60.9300
C4—C31.378 (3)C2—H20.9300
C4—H40.9300C5—H50.9300
C8—C8i1.521 (4)
C6—C1—C2119.0 (2)H8A—C8—H8B107.8
C6—C1—C7122.3 (2)C4—C3—C2120.4 (2)
C2—C1—C7118.74 (19)C4—C3—H3119.8
O1—C7—C8121.5 (2)C2—C3—H3119.8
O1—C7—C1119.7 (2)C1—C6—C5120.1 (2)
C8—C7—C1118.8 (2)C1—C6—H6119.9
C5—C4—C3119.7 (2)C5—C6—H6119.9
C5—C4—H4120.1C3—C2—C1120.2 (2)
C3—C4—H4120.1C3—C2—H2119.9
C7—C8—C8i112.9 (2)C1—C2—H2119.9
C7—C8—H8A109.0C4—C5—C6120.6 (2)
C8i—C8—H8A109.0C4—C5—H5119.7
C7—C8—H8B109.0C6—C5—H5119.7
C8i—C8—H8B109.0
C6—C1—C7—O1−177.5 (3)C2—C1—C6—C50.7 (3)
C2—C1—C7—O11.7 (4)C7—C1—C6—C5179.8 (3)
C6—C1—C7—C82.8 (3)C4—C3—C2—C10.2 (4)
C2—C1—C7—C8−178.0 (2)C6—C1—C2—C3−0.6 (4)
O1—C7—C8—C8i−9.8 (4)C7—C1—C2—C3−179.9 (2)
C1—C7—C8—C8i169.9 (3)C3—C4—C5—C6−0.3 (4)
C5—C4—C3—C20.3 (4)C1—C6—C5—C4−0.2 (4)

Symmetry codes: (i) −x, −y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2479).

References

  • Bruker (1997). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chiu, P.-K. & Sammes, M. P. (1990). Tetrahedron, 46, 3439–3456.
  • Greatrex, B. W., Kimber, M. C., Taylor, D. K. & Tiekink, E. R. T. (2003). J. Org. Chem.68, 4239–4246. [PubMed]
  • Nagarajan, G. & Shechter, H. (1984). J. Org. Chem.49, 62–74.
  • Nevar, N. M., Kel’in, A. V. & Kulinkovich, O. G. (2000). Synthesis, pp. 1259–1262.
  • Sheldrick, G. M. (1997). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography