PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2269.
Published online 2008 November 8. doi:  10.1107/S1600536808035563
PMCID: PMC2959845

rac-3,4-trans-Dichloro-1,2,3,4-tetra­hydro-2-naphthyl acetate

Abstract

The title compound, C12H12Cl2O2, has a bicyclic skeleton containing cyclo­hexene and benzene fragments. The cyclo­hexene ring adopts a half-chair conformation with displacements of two atoms out of the least-squares plane of 0.311 (2) and −0.336 (2) Å. The Cl atoms are trans-positioned.

Related literature

For related literature, see: Frimer (1985a [triangle],b [triangle]); March & Smith (2001 [triangle]); McBride et al. (1999 [triangle]); Metha & Ramesh (2003 [triangle], 2005 [triangle]); Metha et al. (2003 [triangle]); Patai (1983 [triangle]); Ros et al. (2006 [triangle]); Wasserman & Murray (1979 [triangle]). For related structures, see: Kishali et al. (2006a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2269-scheme1.jpg

Experimental

Crystal data

  • C12H12Cl2O2
  • M r = 259.12
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2269-efi1.jpg
  • a = 12.931 (5) Å
  • b = 12.478 (5) Å
  • c = 7.441 (4) Å
  • β = 101.040 (5)°
  • V = 1178.4 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.53 mm−1
  • T = 293 (2) K
  • 0.2 × 0.2 × 0.2 mm

Data collection

  • Rigaku R-AXIS conversion diffractometer
  • Absorption correction: multi-scan (Blessing, 1995 [triangle]) T min = 0.897, T max = 0.898
  • 34473 measured reflections
  • 3627 independent reflections
  • 2486 reflections with I > 2σ(I)
  • R int = 0.083
  • 25 standard reflections every 200 reflections intensity decay: 3%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063
  • wR(F 2) = 0.154
  • S = 1.09
  • 3627 reflections
  • 146 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808035563/kp2181sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035563/kp2181Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are indebted to the Department of Chemistry and Atatürk University, Turkey, for the use of the X-ray diffractometer purchased under grant No. 2003/219 from the University Research Fund.

supplementary crystallographic information

Comment

Oxyfunctionalization of organic unsaturated molecules are efficiently performed by an oxygen atom. It has been reported that the main reactions of singlet oxygen are cycloaddition and ene-reaction (Frimer, 1985a,b; Patai 1983; Wasserman & Murray, 1979). We have successively used isotetralin (1,4,5,8-tetrahydronaphthalene) for a short and stereocontrolled synthesis of a new class of bis-endoperoxide (Kishali et al., 2006a) and the interesting chlorination product, (2S*,3S*,4S*)-3,4-dichloro-1,2,3,4,5,8-hexahydro naphthalen-2-yl acetate (Kishali et al., 2006b), cf. Fig. 3). A multistep procedure for the preparation of a new family of annulated inositols from tetrahydronaphthalene has been developed (Metha & Ramesh, 2003, 2005; Metha et al., 2003). Vicinal halohydrins are versatile building blocks and key intermediates for the synthesis of many bioactive molecules (Ros et al., 2006).

We aimed to synthesize the polyhydroxyhalohidrins from (2S*, 3S*, 4S*)-3, 4-dichloro-1, 2, 3, 4, 5, 8-hexahydronaphthalen-2-yl acetate with KMnO4, but reaction of (2S*, 3S*, 4S*)-3, 4-dichloro-1, 2, 3, 4, 5, 8-hexahydronaphthalen-2-yl acetate with KMnO4 gave a very interesting and unexpected product (I) including an aromatic ring.

Potassium permanganate, a very oxidizing agent can be used to oxidize alkenes to diols (March & Smith, 2001). Limiting the reaction to hydroxylation alone is often difficult, and it is usually attempted by using a cold, diluted and basic KMnO4 solution. Potassium permanganate, when supported on alumina and used in acetone, reacts very differently than potassium permanganate in aqueous solution. The synthesis of benzene derivatives from 1,4-cyclohexadienes by using KMnO4—Al2O3 is already known in the literature (McBride et al., 1999). (2S*, 3S*, 4S*)-3, 4-dichloro-1, 2, 3, 4, 5, 8-hexahydronaphthalen-2-yl acetate was synthesized as described in the literature (Kishali et al., 2006b). We expected the formation of a diol from reaction of (2S*, 3S*, 4S*)-3, 4-dichloro-1, 2, 3, 4, 5, 8-hexahydronaphthalen-2-yl acetate with KMnO4, but instead the formation of (I) was detected.

The bicyclic skeleton contains a cyclohexene and a benzene ring sharing a common C?C bond [C1—C6=1.400 (3) Å] (Fig. 1). The Cl atoms are trans-positioned. C10—Cl1 and C9—Cl2 bond lengths are 1.827 (3) and 1.802 (3) Å, respectively. The three stereogenic centres C2, C3, and C4 are of the same configuration; during crystallization the racemization occurred. All these values are comparable with our previous structure (C12H14O2Cl2) (Kishali et al., 2006b), in which, only the difference, hexadien moiety exists instead of benzene in the carbocyclic ring. Crystal packing is dominated by van der Waals contacts.

Experimental

3,4-Dichloro-1, 2, 3, 4-tetrahydro-naphtahalen-2-yl acetate was prepared as follows. To a magnetically stirred acetone solution (25 ml of (2S*, 3S*, 4S*)-3, 4-dichloro-1, 2, 3, 4, 5, 8-hexahydronaphthalen-2-yl acetate (260 mg, 1 mmol) was added a solution of KMnO4 (158 mg, 1 mmol) and MgSO4 (144 mg, 1.2 mmol) in water (20 ml) at 253 K during 5 h. After the addition was completed, the reaction mixture was stirred for an additional 15 h at the given temperature and then filtered. The filtrate was concentrated to 20 ml by evaporation. The aqueous solution was extracted with ethyl acetate (3x30 ml) and the extract were dried (Na2SO4). Evaporation of the solvent gave racemic mixture of compound I. It was separated by column chromatography, eluting with ethylacetate/hexanes (120 mg, 42%, colourless solid). Colourless solid from CH2Cl2/hexane. m. p: 348–349 K. 1H-NMR (400 MHz, CDCl3, p.p.m.): 7.39–7.12 (m, 4H), 5.78 (m, 1H-C(2)), 5.35 (d, J = 3.3, 1H-C(4)), 4.74 (t, J = 2.9, 1H-C(3)), 3.2 (m, 2H-C(1)), 2.14 (s, 3H-C(Ac)). 13C-NMR (100 MHz, CDCl3, p.p.m.):170.4, 132.9, 131.7, 130.9, 129.5, 129.3, 127.6, 67.3, 61.3, 60.1, 30.2, 30.0, 21.3. calcd C 55.62, H 4.67; found C 55.87, H 4.89.

Refinement

H atoms were placed in geometrically idealized positions (C—H=0.93–0.98 Å) and treated as riding, with Uiso(H)=1.2Ueq(C)(for methine and methylene) or 1.5Ueq(methyl C).

Figures

Fig. 1.
Molecular structure of I with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A packing diagram. H atoms have been omitted for clarity.
Fig. 3.
The preparation of the title compound.

Crystal data

C12H12Cl2O2F(000) = 536
Mr = 259.12Dx = 1.461 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6382 reflections
a = 12.931 (5) Åθ = 2.3–30.6°
b = 12.478 (5) ŵ = 0.53 mm1
c = 7.441 (4) ÅT = 293 K
β = 101.040 (5)°Needle, pale white
V = 1178.4 (9) Å30.2 × 0.2 × 0.2 mm
Z = 4

Data collection

Rigaku R-AXIS conversion diffractometerRint = 0.083
dtprofit.ref scansθmax = 30.7°, θmin = 2.3°
Absorption correction: multi-scan (Blessing, 1995)h = −18→18
Tmin = 0.897, Tmax = 0.898k = −17→17
34473 measured reflectionsl = −10→10
3627 independent reflections25 standard reflections every 200 reflections
2486 reflections with I > 2σ(I) intensity decay: 3%

Refinement

Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.063w = 1/[σ2(Fo2) + (0.0549P)2 + 0.2956P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.154(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.21 e Å3
3627 reflectionsΔρmin = −0.34 e Å3
146 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.22319 (6)0.59964 (5)0.18471 (9)0.0666 (2)
Cl20.12465 (5)0.59224 (5)0.70388 (10)0.0667 (2)
O10.13535 (12)0.35895 (13)0.5577 (2)0.0535 (4)
O20.23303 (14)0.22818 (15)0.4683 (3)0.0722 (5)
C10.34102 (17)0.62147 (18)0.5296 (3)0.0486 (5)
C20.40917 (19)0.7052 (2)0.5078 (3)0.0580 (6)
H20.38430.76230.43150.07*
C30.5123 (2)0.7044 (2)0.5973 (4)0.0646 (7)
H30.55730.76010.58040.078*
C40.5489 (2)0.6200 (2)0.7129 (4)0.0636 (7)
H40.61840.61970.77560.076*
C50.48316 (19)0.5365 (2)0.7357 (3)0.0577 (6)
H50.50890.48020.81350.069*
C60.37804 (17)0.53492 (18)0.6436 (3)0.0478 (5)
C70.30921 (18)0.44074 (19)0.6704 (3)0.0533 (5)
H7A0.34890.37480.66960.064*
H7B0.28830.44670.78840.064*
C80.21251 (17)0.43671 (18)0.5214 (3)0.0483 (5)
H80.23430.41660.40690.058*
C90.15676 (17)0.54420 (18)0.4929 (3)0.0496 (5)
H90.09210.53690.40050.06*
C100.22906 (18)0.62559 (18)0.4281 (3)0.0512 (5)
H100.20120.69750.44160.061*
C110.15545 (19)0.25602 (19)0.5198 (3)0.0546 (6)
C120.0677 (2)0.1837 (2)0.5466 (4)0.0707 (7)
H12A0.04070.20660.65190.106*
H12B0.09340.11160.56480.106*
H12C0.01240.18650.44020.106*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0761 (5)0.0694 (4)0.0518 (4)−0.0055 (3)0.0059 (3)0.0081 (3)
Cl20.0632 (4)0.0683 (4)0.0735 (5)0.0053 (3)0.0256 (3)−0.0070 (3)
O10.0468 (9)0.0490 (9)0.0664 (10)−0.0052 (7)0.0152 (8)0.0032 (7)
O20.0656 (11)0.0582 (11)0.0966 (15)−0.0020 (9)0.0247 (10)−0.0128 (10)
C10.0485 (12)0.0474 (11)0.0511 (12)−0.0018 (9)0.0125 (10)−0.0053 (9)
C20.0639 (15)0.0509 (13)0.0615 (14)−0.0085 (11)0.0179 (12)−0.0030 (11)
C30.0614 (15)0.0659 (16)0.0701 (16)−0.0204 (12)0.0216 (13)−0.0162 (13)
C40.0460 (13)0.0794 (18)0.0653 (16)−0.0074 (12)0.0108 (12)−0.0163 (13)
C50.0487 (13)0.0634 (15)0.0601 (14)0.0002 (11)0.0082 (11)−0.0047 (11)
C60.0444 (11)0.0518 (12)0.0482 (12)−0.0019 (9)0.0114 (9)−0.0028 (9)
C70.0474 (12)0.0509 (12)0.0605 (14)0.0011 (10)0.0076 (11)0.0062 (11)
C80.0430 (11)0.0455 (11)0.0579 (13)−0.0031 (9)0.0131 (10)0.0016 (10)
C90.0438 (11)0.0513 (12)0.0532 (12)0.0022 (9)0.0083 (10)−0.0018 (10)
C100.0533 (13)0.0455 (11)0.0544 (13)0.0019 (9)0.0094 (10)0.0015 (10)
C110.0545 (13)0.0508 (13)0.0566 (14)−0.0052 (10)0.0055 (11)0.0025 (10)
C120.0676 (16)0.0600 (16)0.0823 (19)−0.0171 (13)0.0092 (14)0.0069 (14)

Geometric parameters (Å, °)

Cl1—C101.827 (3)C7—H7A0.97
Cl2—C91.802 (3)C7—H7B0.97
O1—C111.351 (3)C8—H80.98
O1—C81.454 (3)C10—H100.98
C9—C81.518 (3)C4—C51.376 (4)
C9—C101.520 (3)C4—C31.385 (4)
C9—H90.98C4—H40.93
C6—C11.400 (3)C5—H50.93
C6—C51.401 (3)C2—C31.372 (4)
C6—C71.510 (3)C2—H20.93
C1—C21.396 (3)C3—H30.93
C1—C101.500 (3)C12—H12A0.96
O2—C111.192 (3)C12—H12B0.96
C11—C121.493 (3)C12—H12C0.96
C7—C81.504 (3)
C11—O1—C8115.45 (18)C7—C8—H8108.2
C8—C9—C10109.28 (18)C9—C8—H8108.2
C8—C9—Cl2110.77 (17)C1—C10—C9114.21 (19)
C10—C9—Cl2108.22 (16)C1—C10—Cl1110.26 (16)
C8—C9—H9109.5C9—C10—Cl1106.55 (16)
C10—C9—H9109.5C1—C10—H10108.6
Cl2—C9—H9109.5C9—C10—H10108.6
C1—C6—C5118.2 (2)Cl1—C10—H10108.6
C1—C6—C7122.58 (19)C5—C4—C3120.4 (2)
C5—C6—C7119.2 (2)C5—C4—H4119.8
C2—C1—C6119.8 (2)C3—C4—H4119.8
C2—C1—C10119.1 (2)C4—C5—C6121.0 (2)
C6—C1—C10121.1 (2)C4—C5—H5119.5
O2—C11—O1123.5 (2)C6—C5—H5119.5
O2—C11—C12125.1 (2)C3—C2—C1121.0 (2)
O1—C11—C12111.4 (2)C3—C2—H2119.5
C8—C7—C6110.88 (19)C1—C2—H2119.5
C8—C7—H7A109.5C2—C3—C4119.5 (2)
C6—C7—H7A109.5C2—C3—H3120.3
C8—C7—H7B109.5C4—C3—H3120.3
C6—C7—H7B109.5C11—C12—H12A109.5
H7A—C7—H7B108.1C11—C12—H12B109.5
O1—C8—C7112.88 (18)H12A—C12—H12B109.5
O1—C8—C9106.93 (17)C11—C12—H12C109.5
C7—C8—C9112.26 (19)H12A—C12—H12C109.5
O1—C8—H8108.2H12B—C12—H12C109.5
C5—C6—C1—C21.2 (3)C2—C1—C10—C9−167.4 (2)
C7—C6—C1—C2−178.7 (2)C6—C1—C10—C913.3 (3)
C5—C6—C1—C10−179.4 (2)C2—C1—C10—Cl172.7 (2)
C7—C6—C1—C100.6 (3)C6—C1—C10—Cl1−106.6 (2)
C8—O1—C11—O23.4 (3)C8—C9—C10—C1−43.7 (3)
C8—O1—C11—C12−175.2 (2)Cl2—C9—C10—C177.0 (2)
C1—C6—C7—C817.2 (3)C8—C9—C10—Cl178.3 (2)
C5—C6—C7—C8−162.8 (2)Cl2—C9—C10—Cl1−161.00 (12)
C11—O1—C8—C7−79.8 (2)C3—C4—C5—C6−0.2 (4)
C11—O1—C8—C9156.3 (2)C1—C6—C5—C4−1.0 (3)
C6—C7—C8—O1−170.16 (18)C7—C6—C5—C4179.0 (2)
C6—C7—C8—C9−49.2 (3)C6—C1—C2—C3−0.3 (4)
C10—C9—C8—O1−172.10 (18)C10—C1—C2—C3−179.6 (2)
Cl2—C9—C8—O168.8 (2)C1—C2—C3—C4−0.9 (4)
C10—C9—C8—C763.6 (2)C5—C4—C3—C21.2 (4)
Cl2—C9—C8—C7−55.5 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2181).

References

  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Frimer, A. A. (1985a). Singlet Oxygen, Vol. II, Part 1. Boca Raton: CRC Press.
  • Frimer, A. A. (1985b). Singlet Oxygen, Vol. III, Part 2. Boca Raton: CRC Press.
  • Kishali, N., Sahin, E. & Kara, Y. (2006a). Org. Lett.2006, 60, 1791–1793. [PubMed]
  • Kishali, N., Sahin, E. & Kara, Y. (2006b). Helv. Chim. Acta, 89, 1246–1253.
  • March, J. & Smith, M. B. (2001). Advanced Organic Chemistry New York: John Wiley and Sons.
  • McBride, C. M., Chrisman, W., Harris, C. E. & Singaram, B. (1999). Tetrahedron Lett.40, 45–48.
  • Metha, G. & Ramesh, S. S. (2003). Tetrahedron Lett.44, 3105–3108.
  • Metha, G. & Ramesh, S. S. (2005). Eur. J. Org. Chem. pp. 2225–2238.
  • Metha, G., Ramesh, S. S. & Bera, M. K. (2003). Chem. Eur. J.9, 2264–2272. [PubMed]
  • Patai, S. (1983). Editor. The Chemistry of Functional Groups, Peroxides. New York: Wiley.
  • Rigaku/MSC (2005). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  • Ros, A., Magriz, A., Dietrich, H., Fernandez, R., Alvarez, E. & Lassaletta, J. M. (2006). Org. Lett.8, 127–130. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wasserman, H. H. & Murray, W. M. (1979). Editors. Singlet Oxygen New York: Academic Press.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography