PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1556.
Published online 2008 November 20. doi:  10.1107/S1600536808037288
PMCID: PMC2959843

Bis(μ-biphenyl-2,2′-dicarboxyl­ato)bis­[(2,2′-bipyridine)cobalt(II)]

Abstract

In the title compound, [Co2(C14H8O4)2(C10H8N2)2], the CoII atom is coordinated by two N atoms from one 2,2′-bipyridine ligand and two O atoms from two biphenyl-2,2′-dicarboxyl­ate (2,2′-dpa) ligands in a distorted planar geometry. Longer Co—O contacts [2.437 (3) and 2.552 (3) Å] are formed to the second O atom of each coordinated carboxyl­ate group so that these groups approximate a bidentate coordination mode and the coordination geometry around CoII approaches distorted octa­hedral. The 2,2′-dpa ligands bridge two CoII atoms, forming a cyclic dinuclear complex around a centre of inversion.

Related literature

For metal-organic frameworks containing 2,2′-dpa, see: Rueff et al. (2003 [triangle]); Wang et al. (2006 [triangle]); Xu et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1556-scheme1.jpg

Experimental

Crystal data

  • [Co2(C14H8O4)2(C10H8N2)2]
  • M r = 910.64
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1556-efi1.jpg
  • a = 11.236 (2) Å
  • b = 13.198 (2) Å
  • c = 13.393 (2) Å
  • β = 102.90 (2)°
  • V = 1936.1 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.92 mm−1
  • T = 296 (2) K
  • 0.39 × 0.27 × 0.21 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.715, T max = 0.830
  • 10081 measured reflections
  • 3408 independent reflections
  • 2591 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.093
  • S = 1.00
  • 3408 reflections
  • 280 parameters
  • H-atom parameters not refined
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808037288/bi2316sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037288/bi2316Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from Maoming University.

supplementary crystallographic information

Comment

biphenyl-2,2'-dicarboxylic acid (H2dpa) has been demonstrated to be a useful ligand for constructing metal-organic frameworks (Rueff et al., 2003; Wang et al., 2006; Xu et al., 2006). The title compound is a cyclic dinuclear CoII compound in which biphenyl-2,2'-dicarboxylate (2,2'-dpa) acts as a bridging ligand.

As shown in Figure 1, each CoII atom is coordinated by two N atoms from one 2,2'-bipyridine ligand and two O atoms from two biphenyl-2,2'-dicarboxylate ligands, forming a distorted planar geometry. The Co—O and Co—N bond lengths are in the range 1.948 (2)–1.964 (2) and 1.968 (3)–1.989 (3) Å, respectively. Longer Co—O contacts (2.437 (3) and 2.552 (3) Å) are formed to the second O atom of each coordinated carboxylate group, so that these groups approximate a bidentate coordination mode and the coordination geometry around CoII approaches distorted octahedral. The biphenyl-2,2'-dicarboxylate ligand acts as a bridge between CoII atoms to form a cyclic dinuclear complex around a centre of inversion.

Experimental

A mixture of cobalt(II) chloride hexahydrate (0.1 mmol), 2,2'-bipyridine (0.1 mmol), biphenyl-2,2'-dicarboxylic acid (0.2 mmol) and H2O (16 ml) in a 25 ml Teflon-lined stainless steel autoclave was kept at 463 K for five days. Red crystals were obtained after cooling to room temperature with a yield of 12%. Elemental analysis calculated: C 63.25, H 3.51, N 6.15%; found: C 63.21, H 3.39, N 6.09%.

Refinement

H atoms were placed in calculated positions with C—H = 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Molecular unit in the title compound showing displacement ellipsoids at 30% probability for non-H atoms. Non-labelled atoms are related to labelled atoms by the symmetry code: 1-x, 1-y, 1-z.

Crystal data

[Co2(C14H8O4)2(C10H8N2)2]F000 = 932
Mr = 910.64Dx = 1.562 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3408 reflections
a = 11.236 (2) Åθ = 2.1–25.0º
b = 13.198 (2) ŵ = 0.92 mm1
c = 13.393 (2) ÅT = 296 (2) K
β = 102.90 (2)ºBlock, red
V = 1936.1 (5) Å30.39 × 0.27 × 0.21 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer3408 independent reflections
Radiation source: fine-focus sealed tube2591 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.040
T = 296(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Bruker, 2001)h = −13→13
Tmin = 0.715, Tmax = 0.830k = −15→15
10081 measured reflectionsl = −15→7

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters not refined
wR(F2) = 0.093  w = 1/[σ2(Fo2) + (0.049P)2 + 0.1211P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.005
3408 reflectionsΔρmax = 0.23 e Å3
280 parametersΔρmin = −0.28 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.69884 (3)0.33942 (2)0.55976 (3)0.0362 (8)
C10.4768 (3)0.3112 (2)0.5772 (2)0.0376 (7)
C20.3402 (2)0.30053 (19)0.5493 (2)0.0340 (6)
C30.2858 (3)0.2453 (2)0.4630 (2)0.0432 (7)
H30.33520.21140.42680.052*
C40.1603 (3)0.2389 (2)0.4292 (2)0.0479 (8)
H40.12630.20070.37150.057*
C50.0866 (3)0.2894 (2)0.4814 (2)0.0466 (8)
H50.00210.28640.45910.056*
C60.1389 (3)0.3447 (2)0.5672 (2)0.0420 (7)
H60.08820.37890.60210.050*
C70.2648 (2)0.35125 (19)0.6036 (2)0.0341 (6)
C80.7126 (2)0.4230 (2)0.3940 (2)0.0368 (7)
C90.6933 (2)0.4851 (2)0.2986 (2)0.0344 (6)
C100.6914 (2)0.5897 (2)0.2997 (2)0.0331 (6)
C110.6643 (3)0.6406 (2)0.2068 (2)0.0427 (7)
H110.66490.71110.20660.051*
C120.6363 (3)0.5892 (2)0.1142 (2)0.0483 (8)
H120.61560.62510.05300.058*
C130.6393 (3)0.4859 (2)0.1133 (2)0.0477 (8)
H130.62150.45060.05160.057*
C140.6691 (3)0.4344 (2)0.2050 (2)0.0417 (7)
H140.67320.36410.20440.050*
C150.8778 (3)0.4946 (2)0.6591 (2)0.0466 (8)
H150.83410.53990.61160.056*
C160.9763 (3)0.5291 (3)0.7318 (3)0.0563 (9)
H160.99980.59670.73200.068*
C171.0395 (3)0.4634 (3)0.8038 (3)0.0573 (9)
H171.10480.48620.85430.069*
C181.0053 (3)0.3639 (3)0.8004 (2)0.0515 (8)
H181.04740.31800.84810.062*
C190.9069 (2)0.3323 (2)0.7249 (2)0.0395 (7)
C200.8635 (2)0.2279 (2)0.7100 (2)0.0384 (7)
C210.9169 (3)0.1475 (3)0.7677 (3)0.0558 (9)
H210.98130.15760.82380.067*
C220.8741 (3)0.0524 (3)0.7416 (3)0.0638 (10)
H220.9100−0.00320.77920.077*
C230.7776 (3)0.0393 (2)0.6593 (3)0.0611 (10)
H230.7492−0.02550.63960.073*
C240.7238 (3)0.1219 (2)0.6068 (3)0.0512 (8)
H240.65600.11320.55310.061*
N10.8438 (2)0.39788 (17)0.65536 (17)0.0389 (6)
N20.7664 (2)0.21450 (17)0.63096 (18)0.0400 (6)
O10.53335 (17)0.28601 (15)0.50773 (15)0.0449 (5)
O20.53139 (18)0.34378 (16)0.66074 (17)0.0561 (6)
O30.7602 (2)0.33887 (15)0.39642 (18)0.0615 (7)
O40.67220 (18)0.45631 (14)0.46882 (15)0.0419 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0383 (19)0.0317 (18)0.0364 (19)0.0024 (15)0.0038 (15)−0.0010 (15)
C10.0442 (17)0.0298 (15)0.0383 (17)−0.0005 (13)0.0083 (15)−0.0045 (13)
C20.0371 (15)0.0266 (14)0.0379 (17)−0.0029 (12)0.0076 (13)−0.0027 (12)
C30.0447 (18)0.0380 (17)0.0477 (19)−0.0056 (13)0.0124 (15)−0.0125 (14)
C40.0467 (18)0.0432 (17)0.050 (2)−0.0131 (15)0.0029 (16)−0.0116 (15)
C50.0365 (16)0.0453 (18)0.054 (2)−0.0079 (14)0.0016 (16)−0.0012 (16)
C60.0369 (16)0.0431 (17)0.0467 (19)−0.0014 (14)0.0106 (14)−0.0031 (15)
C70.0364 (15)0.0271 (14)0.0370 (16)−0.0039 (12)0.0045 (13)0.0022 (12)
C80.0388 (16)0.0325 (16)0.0370 (17)0.0033 (13)0.0040 (14)−0.0015 (13)
C90.0343 (15)0.0353 (15)0.0324 (16)0.0019 (12)0.0050 (13)0.0012 (13)
C100.0306 (14)0.0333 (15)0.0347 (16)0.0017 (12)0.0060 (13)−0.0009 (13)
C110.0490 (18)0.0375 (16)0.0417 (18)0.0070 (13)0.0103 (15)0.0072 (14)
C120.0558 (19)0.055 (2)0.0330 (17)0.0089 (16)0.0067 (15)0.0071 (15)
C130.0503 (18)0.058 (2)0.0329 (17)0.0039 (16)0.0044 (15)−0.0060 (15)
C140.0448 (17)0.0371 (16)0.0405 (18)0.0011 (13)0.0041 (15)−0.0048 (14)
C150.0478 (18)0.0430 (18)0.0472 (19)−0.0048 (15)0.0067 (16)0.0030 (15)
C160.054 (2)0.056 (2)0.058 (2)−0.0192 (17)0.0091 (18)−0.0071 (18)
C170.0416 (18)0.078 (3)0.048 (2)−0.0164 (18)0.0013 (16)−0.0016 (19)
C180.0378 (17)0.070 (2)0.0420 (19)−0.0044 (16)−0.0002 (15)0.0102 (16)
C190.0322 (15)0.0532 (18)0.0326 (16)0.0027 (14)0.0059 (13)0.0054 (14)
C200.0358 (15)0.0466 (17)0.0337 (16)0.0079 (13)0.0099 (14)0.0081 (14)
C210.0496 (19)0.059 (2)0.057 (2)0.0149 (17)0.0072 (17)0.0198 (17)
C220.061 (2)0.051 (2)0.082 (3)0.0163 (18)0.023 (2)0.028 (2)
C230.068 (2)0.0381 (19)0.079 (3)0.0010 (17)0.021 (2)0.0111 (18)
C240.057 (2)0.0408 (18)0.056 (2)−0.0040 (16)0.0150 (17)0.0012 (16)
N10.0384 (13)0.0417 (15)0.0352 (14)0.0009 (11)0.0056 (11)0.0031 (11)
N20.0421 (14)0.0380 (14)0.0397 (15)0.0009 (11)0.0087 (12)0.0045 (11)
O10.0396 (11)0.0581 (14)0.0366 (12)0.0006 (10)0.0072 (10)−0.0038 (10)
O20.0415 (12)0.0719 (15)0.0515 (14)−0.0037 (11)0.0030 (11)−0.0269 (12)
O30.0940 (18)0.0411 (13)0.0539 (14)0.0263 (12)0.0263 (14)0.0070 (11)
O40.0513 (12)0.0396 (11)0.0350 (11)0.0073 (9)0.0101 (10)0.0016 (9)

Geometric parameters (Å, °)

Co1—O41.9469 (18)C11—H110.930
Co1—O11.9651 (19)C12—C131.365 (4)
Co1—N21.970 (2)C12—H120.930
Co1—N11.989 (2)C13—C141.377 (4)
Co1—C82.514 (3)C13—H130.930
C1—O21.228 (3)C14—H140.930
C1—O11.281 (3)C15—N11.330 (4)
C1—C21.503 (4)C15—C161.378 (4)
C2—C31.388 (4)C15—H150.930
C2—C71.404 (4)C16—C171.372 (4)
C3—C41.384 (4)C16—H160.930
C3—H30.930C17—C181.366 (4)
C4—C51.370 (4)C17—H170.930
C4—H40.930C18—C191.385 (4)
C5—C61.378 (4)C18—H180.930
C5—H50.930C19—N11.351 (3)
C6—C71.392 (4)C19—C201.461 (4)
C6—H60.930C20—N21.351 (3)
C7—C10i1.497 (4)C20—C211.370 (4)
C8—O31.230 (3)C21—C221.360 (5)
C8—O41.267 (3)C21—H210.930
C8—C91.493 (4)C22—C231.373 (5)
C9—C101.380 (4)C22—H220.930
C9—C141.393 (4)C23—C241.364 (4)
C10—C111.387 (4)C23—H230.930
C10—C7i1.497 (4)C24—N21.326 (4)
C11—C121.386 (4)C24—H240.930
O4—Co1—O193.51 (8)C13—C12—H12120.1
O4—Co1—N2162.73 (9)C11—C12—H12120.1
O1—Co1—N295.93 (9)C12—C13—C14119.1 (3)
O4—Co1—N194.86 (9)C12—C13—H13120.5
O1—Co1—N1160.30 (9)C14—C13—H13120.5
N2—Co1—N180.88 (9)C13—C14—C9121.7 (3)
O4—Co1—C829.68 (8)C13—C14—H14119.2
O1—Co1—C894.82 (9)C9—C14—H14119.2
N2—Co1—C8134.56 (9)N1—C15—C16121.5 (3)
N1—Co1—C8101.27 (9)N1—C15—H15119.2
O2—C1—O1121.7 (3)C16—C15—H15119.2
O2—C1—C2122.2 (3)C17—C16—C15119.7 (3)
O1—C1—C2116.1 (2)C17—C16—H16120.1
C3—C2—C7118.5 (2)C15—C16—H16120.1
C3—C2—C1119.5 (3)C18—C17—C16119.1 (3)
C7—C2—C1121.9 (2)C18—C17—H17120.5
C4—C3—C2122.2 (3)C16—C17—H17120.5
C4—C3—H3118.9C17—C18—C19119.1 (3)
C2—C3—H3118.9C17—C18—H18120.4
C5—C4—C3119.4 (3)C19—C18—H18120.4
C5—C4—H4120.3N1—C19—C18121.4 (3)
C3—C4—H4120.3N1—C19—C20113.7 (2)
C4—C5—C6119.3 (3)C18—C19—C20124.8 (3)
C4—C5—H5120.3N2—C20—C21121.1 (3)
C6—C5—H5120.3N2—C20—C19114.6 (2)
C5—C6—C7122.4 (3)C21—C20—C19124.3 (3)
C5—C6—H6118.8C22—C21—C20119.0 (3)
C7—C6—H6118.8C22—C21—H21120.5
C6—C7—C2118.2 (3)C20—C21—H21120.5
C6—C7—C10i116.6 (3)C21—C22—C23119.5 (3)
C2—C7—C10i125.2 (2)C21—C22—H22120.2
O3—C8—O4121.5 (3)C23—C22—H22120.2
O3—C8—C9119.8 (3)C24—C23—C22119.5 (3)
O4—C8—C9118.5 (2)C24—C23—H23120.2
O3—C8—Co172.13 (17)C22—C23—H23120.2
O4—C8—Co149.52 (13)N2—C24—C23121.1 (3)
C9—C8—Co1166.2 (2)N2—C24—H24119.5
C10—C9—C14119.3 (3)C23—C24—H24119.5
C10—C9—C8122.7 (3)C15—N1—C19119.1 (3)
C14—C9—C8117.9 (2)C15—N1—Co1125.7 (2)
C9—C10—C11118.4 (3)C19—N1—Co1115.06 (19)
C9—C10—C7i121.8 (2)C24—N2—C20119.7 (3)
C11—C10—C7i119.2 (2)C24—N2—Co1125.0 (2)
C12—C11—C10121.7 (3)C20—N2—Co1115.23 (18)
C12—C11—H11119.1C1—O1—Co1103.46 (17)
C10—C11—H11119.1C8—O4—Co1100.80 (16)
C13—C12—C11119.7 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2316).

References

  • Bruker (2001). SADABS and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Rueff, J.-M., Pillet, S., Bonaventure, G., Souhassou, M. & Rabu, P. (2003). Eur. J. Inorg. Chem. pp. 4173–4178.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, R.-H., Gong, Y.-Q., Han, L., Yuan, D.-Q., Lou, B.-Y., Wu, B.-L. & Hong, M.-C. (2006). J. Mol. Struct.784, 1–6.
  • Xu, X.-X., Lu, Y., Wang, E.-B., Ma, Y. & Bai, X.-L. (2006). Cryst. Growth Des.6, 2029–2035.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography