PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2255.
Published online 2008 November 8. doi:  10.1107/S1600536808035149
PMCID: PMC2959837

1-(4-Methyl­benzo­yl)-3-[5-(4-pyrid­yl)-1,3,4-thia­diazol-2-yl]urea

Abstract

In the title compound, C16H13N5O2S, the five non-H atoms of the urea linkage adopt a planar configuration owing to the presence of an intra­molecular N—H(...)O hydrogen bond. The maximum deviation from planarity is 0.022 (2) Å. The thia­diazole and pyridine heterocyclic rings are close to being coplanar, with a dihedral angle of 6.7 (2)° between their mean planes. Inter­molecular N—H(...)O hydrogen bonds link two neighbouring mol­ecules into centrosymmetric R 2 2(8) dimers. Four C atoms and the attached H atoms of the benzene ring are disordered over two positions of equal occupancy.

Related literature

For general background, see: Chen et al. (2005 [triangle]); Foroumadi et al. (2002 [triangle]); Song et al. (2007 [triangle]); Song et al. (2008 [triangle]). For related structures, see: Song & Tan et al. (2005 [triangle]). For the synthesis, see: Song & Feng et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2255-scheme1.jpg

Experimental

Crystal data

  • C16H13N5O2S
  • M r = 339.37
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2255-efi1.jpg
  • a = 5.0563 (5) Å
  • b = 11.8561 (11) Å
  • c = 13.2506 (12) Å
  • α = 88.892 (2)°
  • β = 80.849 (2)°
  • γ = 77.989 (2)°
  • V = 766.99 (13) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 297 (2) K
  • 0.20 × 0.10 × 0.04 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: none
  • 6171 measured reflections
  • 2978 independent reflections
  • 2120 reflections with I > 2σ(I)
  • R int = 0.096

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062
  • wR(F 2) = 0.195
  • S = 1.06
  • 2978 reflections
  • 214 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808035149/fj2164sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035149/fj2164Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Scientific Research Fund for Distinguished Young and Middle-aged Talent of Hubei Provincial Department of Education (grant No. Q200729001) and the Natural Science Foundation of Hubei Province, China (grant No. 2007ABA001).

supplementary crystallographic information

Comment

1,3,4-Thiadiazole derivatives have been reported to possess broad spectrum bioactivities (Foroumadi et al., 2002; Song et al., 2007). Urea derivatives, especially aroylurea derivatives, have attracted many chemist's interest owing to their diverse biological effects, such as insecticidal, fungicidal, herbicidal and plant-growth regulating activities (Chen et al., 2005; Song et al., 2008). Furthermore, pyridine derivatives have become one of research hotspots in modern agrochemistry and medicinal chemistry. In our continuing search for new plant-growth regulators, we would like to investigate aroyl ureas incorporating both 1,3,4-thiadiazole and pyridine rings, including the title compound.

The crystal structure (Fig.1) revealed that the urea linkage unit O1—C8—N1—C9—N2—H2 adopts the stable conformation due to the the formation of a strong intramolecular N—H···O hydrogen bond to give a planar six-membered ring, as reported (Song and Tan et al., 2005), which is essentially coplanar with a maximum deviation from planarity of 0.022 (2)Å for atom O1. The thiadiazole and pyridine heterocyclic fragments also lie essentially in the same plane, the maximum deviation from that plane being 0.059 (3)Å for atom C15. The dihedral angle between the two mean planes is 6.7 (2)°. All bond lengths and angles are as expected. In the crystal structure, the molecules are linked by complementary N—H···O hydrogen bonds into centrosymmetric R22(8) dimers (Fig. 2 and Table 1).

Experimental

The title compound was prepared according to the procedure of Song and Feng et al. (2005). Suitable crystals were obtained by vapor diffusion of methanol in DMF at room temperature (m.p. >573 K). Elemental analysis: analysis calculated for C16H13N5O2S: C 56.63, H 3.86, N 20.64%; found: C 56.55, H 3.76, N 20.81%.

Refinement

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with C—H distances of 0.96 Å and Uiso(H) = 1.5Ueq(C), but each group was allowed to rotate freely about its C—C bond. Other H atoms were positioned geometrically and constrained to ride on their parent atoms with C—H distances of 0.93 Å, N—H distances of 0.86Å and Uiso(H) = 1.2Ueq(C). The atoms C3, C4, C6 and C7 in the benzene ring are found to be disordered over two positions.

Figures

Fig. 1.
View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size. Both disorder components are shown.
Fig. 2.
A partial packing diagram for (I) [symmetry code: (a) 2 - x, 2 - y, -z]. Hydrogen bonds are indicated by dashed lines.

Crystal data

C16H13N5O2S1Z = 2
Mr = 339.37F000 = 352
Triclinic, P1Dx = 1.469 Mg m3
Hall symbol: -P 1Melting point > 573 K
a = 5.0563 (5) ÅMo Kα radiation λ = 0.71073 Å
b = 11.8561 (11) ÅCell parameters from 1721 reflections
c = 13.2506 (12) Åθ = 2.3–24.7º
α = 88.892 (2)ºµ = 0.23 mm1
β = 80.849 (2)ºT = 297 (2) K
γ = 77.989 (2)ºBlock, colorless
V = 766.99 (13) Å30.20 × 0.10 × 0.04 mm

Data collection

Bruker SMART CCD area-detector diffractometer2120 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.096
Monochromator: graphiteθmax = 26.0º
T = 297(2) Kθmin = 1.8º
[var phi] and ω scansh = −6→6
Absorption correction: nonek = −14→14
6171 measured reflectionsl = −16→16
2978 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.195  w = 1/[σ2(Fo2) + (0.1026P)2] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2978 reflectionsΔρmax = 0.24 e Å3
214 parametersΔρmin = −0.32 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
S10.59211 (17)0.73166 (7)−0.09171 (5)0.0562 (3)
N10.8010 (5)0.96100 (19)0.13767 (16)0.0449 (6)
H10.91091.00580.11590.054*
N20.5583 (5)0.82578 (19)0.09796 (16)0.0459 (6)
H20.49950.82590.16250.055*
N30.2887 (6)0.6962 (2)0.07332 (18)0.0565 (7)
N40.2335 (5)0.6273 (2)0.00007 (19)0.0537 (7)
N50.3212 (7)0.4482 (3)−0.3539 (2)0.0800 (9)
O10.5680 (6)0.8977 (2)0.27987 (16)0.0916 (9)
O20.8225 (5)0.90478 (17)−0.02610 (13)0.0574 (6)
C11.0069 (10)1.2823 (3)0.5070 (3)0.0936 (14)
H1A0.92551.27080.57590.140*
H1B0.94001.36010.48740.140*
H1C1.20241.26840.50250.140*
C20.9326 (7)1.1995 (3)0.4361 (2)0.0567 (8)
C50.8036 (6)1.0456 (2)0.3046 (2)0.0460 (7)
C3A0.9463 (13)1.2164 (5)0.3343 (4)0.0512 (14)*0.50
H3A0.98701.28520.30820.061*0.50
C4A0.9036 (12)1.1382 (5)0.2677 (4)0.0432 (13)*0.50
H4A0.94291.14840.19760.052*0.50
C6A0.7810 (12)1.0218 (5)0.4113 (4)0.0501 (14)*0.50
H6A0.73570.95340.43650.060*0.50
C7A0.8276 (13)1.1023 (6)0.4758 (5)0.0533 (15)*0.50
H7A0.79031.09330.54620.064*0.50
C3B1.1141 (12)1.1626 (5)0.3379 (4)0.0473 (13)*0.50
H3B1.27991.18570.31970.057*0.50
C4B1.0226 (12)1.0914 (5)0.2743 (4)0.0405 (12)*0.50
H4B1.11791.07530.20840.049*0.50
C6B0.6374 (12)1.0858 (5)0.3994 (4)0.0464 (13)*0.50
H6B0.47111.06340.41880.056*0.50
C7B0.7220 (13)1.1576 (5)0.4624 (4)0.0468 (14)*0.50
H7B0.62001.17600.52700.056*0.50
C80.7154 (7)0.9624 (3)0.2418 (2)0.0518 (8)
C90.7317 (6)0.8962 (2)0.0638 (2)0.0430 (7)
C100.4699 (6)0.7538 (2)0.03602 (19)0.0422 (6)
C110.3759 (6)0.6354 (2)−0.0884 (2)0.0454 (7)
C120.3576 (6)0.5700 (2)−0.1797 (2)0.0503 (7)
C130.5012 (9)0.5865 (4)−0.2729 (3)0.1010 (16)
H130.61680.6387−0.27960.121*
C140.4754 (10)0.5258 (4)−0.3576 (3)0.1101 (18)
H140.57200.5405−0.42060.132*
C150.1854 (7)0.4317 (3)−0.2624 (3)0.0663 (9)
H150.07590.3771−0.25720.080*
C160.1956 (7)0.4896 (3)−0.1754 (2)0.0581 (8)
H160.09370.4747−0.11360.070*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0657 (6)0.0700 (6)0.0411 (5)−0.0402 (4)0.0034 (3)−0.0127 (3)
N10.0545 (15)0.0513 (13)0.0352 (12)−0.0283 (11)−0.0024 (10)−0.0022 (9)
N20.0566 (15)0.0543 (14)0.0333 (12)−0.0283 (12)−0.0042 (10)−0.0003 (10)
N30.0751 (18)0.0661 (16)0.0403 (13)−0.0439 (14)−0.0060 (12)0.0019 (11)
N40.0653 (17)0.0581 (15)0.0480 (14)−0.0341 (13)−0.0116 (12)0.0018 (11)
N50.093 (2)0.082 (2)0.073 (2)−0.0397 (18)−0.0040 (17)−0.0306 (16)
O10.145 (2)0.119 (2)0.0372 (12)−0.0999 (19)0.0036 (13)−0.0042 (12)
O20.0811 (15)0.0682 (13)0.0326 (10)−0.0449 (12)0.0014 (9)−0.0052 (9)
C10.156 (4)0.078 (3)0.062 (2)−0.043 (3)−0.035 (2)−0.0158 (19)
C20.074 (2)0.0541 (18)0.0452 (17)−0.0130 (16)−0.0175 (15)−0.0104 (13)
C50.0518 (17)0.0528 (16)0.0355 (14)−0.0176 (13)−0.0036 (12)−0.0009 (12)
C80.066 (2)0.0588 (18)0.0353 (15)−0.0287 (15)−0.0031 (13)−0.0002 (12)
C90.0544 (17)0.0432 (15)0.0353 (14)−0.0201 (13)−0.0055 (12)−0.0010 (11)
C100.0485 (16)0.0447 (15)0.0374 (14)−0.0173 (12)−0.0088 (12)0.0017 (11)
C110.0501 (17)0.0461 (15)0.0440 (16)−0.0178 (13)−0.0082 (13)−0.0026 (12)
C120.0527 (18)0.0505 (16)0.0534 (18)−0.0203 (14)−0.0114 (14)−0.0095 (13)
C130.125 (4)0.136 (4)0.063 (2)−0.099 (3)0.022 (2)−0.037 (2)
C140.137 (4)0.154 (4)0.059 (2)−0.099 (4)0.023 (2)−0.043 (2)
C150.079 (2)0.0558 (19)0.075 (2)−0.0306 (18)−0.0219 (19)−0.0083 (16)
C160.073 (2)0.0506 (17)0.0576 (19)−0.0263 (16)−0.0127 (16)−0.0013 (13)

Geometric parameters (Å, °)

S1—C101.712 (3)C5—C6B1.425 (6)
S1—C111.733 (3)C5—C6A1.427 (6)
N1—C81.378 (3)C5—C81.483 (4)
N1—C91.386 (3)C3A—C4A1.363 (8)
N1—H10.8600C3A—H3A0.9300
N2—C91.354 (3)C4A—H4A0.9300
N2—C101.380 (3)C6A—C7A1.374 (8)
N2—H20.8600C6A—H6A0.9300
N3—C101.285 (3)C7A—H7A0.9300
N3—N41.379 (3)C3B—C4B1.397 (8)
N4—C111.287 (3)C3B—H3B0.9300
N5—C141.320 (5)C4B—H4B0.9300
N5—C151.327 (4)C6B—C7B1.378 (8)
O1—C81.225 (4)C6B—H6B0.9300
O2—C91.217 (3)C7B—H7B0.9300
C1—C21.512 (4)C11—C121.475 (4)
C1—H1A0.9600C12—C131.362 (4)
C1—H1B0.9600C12—C161.375 (4)
C1—H1C0.9600C13—C141.382 (5)
C2—C7B1.264 (6)C13—H130.9300
C2—C3A1.353 (6)C14—H140.9300
C2—C7A1.424 (7)C15—C161.367 (5)
C2—C3B1.483 (6)C15—H150.9300
C5—C4B1.335 (6)C16—H160.9300
C5—C4A1.353 (6)
C10—S1—C1186.09 (12)C6A—C7A—H7A119.7
C8—N1—C9127.9 (2)C2—C7A—H7A119.7
C8—N1—H1116.1C4B—C3B—C2116.5 (5)
C9—N1—H1116.1C4B—C3B—H3B121.8
C9—N2—C10124.4 (2)C2—C3B—H3B121.8
C9—N2—H2117.8C5—C4B—C3B122.4 (5)
C10—N2—H2117.8C5—C4B—H4B118.8
C10—N3—N4111.7 (2)C3B—C4B—H4B118.8
C11—N4—N3112.8 (2)C7B—C6B—C5120.3 (5)
C14—N5—C15115.8 (3)C7B—C6B—H6B119.9
C2—C1—H1A109.5C5—C6B—H6B119.9
C2—C1—H1B109.5C2—C7B—C6B122.7 (5)
H1A—C1—H1B109.5C2—C7B—H7B118.7
C2—C1—H1C109.5C6B—C7B—H7B118.7
H1A—C1—H1C109.5O1—C8—N1120.4 (3)
H1B—C1—H1C109.5O1—C8—C5121.8 (3)
C7B—C2—C3A105.2 (4)N1—C8—C5117.7 (2)
C3A—C2—C7A116.6 (4)O2—C9—N2123.3 (3)
C7B—C2—C3B119.8 (4)O2—C9—N1120.5 (2)
C7A—C2—C3B107.3 (4)N2—C9—N1116.2 (2)
C7B—C2—C1120.0 (4)N3—C10—N2120.5 (2)
C3A—C2—C1122.8 (4)N3—C10—S1115.5 (2)
C7A—C2—C1120.5 (4)N2—C10—S1124.0 (2)
C3B—C2—C1120.1 (4)N4—C11—C12123.7 (3)
C4B—C5—C6B117.5 (4)N4—C11—S1114.0 (2)
C4A—C5—C6B104.1 (4)C12—C11—S1122.3 (2)
C4B—C5—C6A110.0 (4)C13—C12—C16116.6 (3)
C4A—C5—C6A119.8 (4)C13—C12—C11121.4 (3)
C4B—C5—C8123.5 (3)C16—C12—C11122.0 (3)
C4A—C5—C8124.9 (3)C12—C13—C14120.2 (3)
C6B—C5—C8118.9 (3)C12—C13—H13119.9
C6A—C5—C8115.3 (3)C14—C13—H13119.9
C2—C3A—C4A123.7 (5)N5—C14—C13123.5 (4)
C2—C3A—H3A118.1N5—C14—H14118.2
C4A—C3A—H3A118.1C13—C14—H14118.2
C5—C4A—C3A119.4 (5)N5—C15—C16124.3 (3)
C5—C4A—H4A120.3N5—C15—H15117.8
C3A—C4A—H4A120.3C16—C15—H15117.8
C7A—C6A—C5118.5 (5)C15—C16—C12119.6 (3)
C7A—C6A—H6A120.8C15—C16—H16120.2
C5—C6A—H6A120.8C12—C16—H16120.2
C6A—C7A—C2120.7 (5)
C10—N3—N4—C110.4 (4)C9—N1—C8—O13.1 (5)
C7B—C2—C3A—C4A−43.7 (7)C9—N1—C8—C5−175.8 (3)
C7A—C2—C3A—C4A−9.7 (8)C4B—C5—C8—O1158.9 (4)
C3B—C2—C3A—C4A75.1 (7)C4A—C5—C8—O1−162.1 (4)
C1—C2—C3A—C4A174.0 (5)C6B—C5—C8—O1−25.6 (5)
C4B—C5—C4A—C3A−89.2 (8)C6A—C5—C8—O118.8 (5)
C6B—C5—C4A—C3A30.4 (7)C4B—C5—C8—N1−22.2 (5)
C6A—C5—C4A—C3A−9.0 (8)C4A—C5—C8—N116.8 (6)
C8—C5—C4A—C3A172.0 (4)C6B—C5—C8—N1153.3 (3)
C2—C3A—C4A—C510.0 (9)C6A—C5—C8—N1−162.3 (3)
C4B—C5—C6A—C7A42.4 (7)C10—N2—C9—O21.7 (5)
C4A—C5—C6A—C7A8.5 (7)C10—N2—C9—N1−179.0 (2)
C6B—C5—C6A—C7A−66.8 (6)C8—N1—C9—O2179.4 (3)
C8—C5—C6A—C7A−172.3 (5)C8—N1—C9—N20.1 (5)
C5—C6A—C7A—C2−8.6 (9)N4—N3—C10—N2−178.3 (2)
C7B—C2—C7A—C6A86.0 (9)N4—N3—C10—S10.4 (3)
C3A—C2—C7A—C6A9.0 (8)C9—N2—C10—N3−174.6 (3)
C3B—C2—C7A—C6A−32.1 (7)C9—N2—C10—S16.8 (4)
C1—C2—C7A—C6A−174.6 (5)C11—S1—C10—N3−0.7 (2)
C7B—C2—C3B—C4B6.7 (7)C11—S1—C10—N2177.9 (3)
C3A—C2—C3B—C4B−70.3 (7)N3—N4—C11—C12179.5 (3)
C7A—C2—C3B—C4B40.9 (6)N3—N4—C11—S1−1.0 (3)
C1—C2—C3B—C4B−176.4 (4)C10—S1—C11—N41.0 (2)
C4A—C5—C4B—C3B81.4 (8)C10—S1—C11—C12−179.5 (3)
C6B—C5—C4B—C3B9.6 (8)N4—C11—C12—C13176.2 (3)
C6A—C5—C4B—C3B−33.0 (7)S1—C11—C12—C13−3.3 (5)
C8—C5—C4B—C3B−174.9 (4)N4—C11—C12—C16−3.7 (5)
C2—C3B—C4B—C5−8.8 (8)S1—C11—C12—C16176.7 (2)
C4B—C5—C6B—C7B−8.2 (7)C16—C12—C13—C141.4 (7)
C4A—C5—C6B—C7B−39.6 (6)C11—C12—C13—C14−178.6 (4)
C6A—C5—C6B—C7B80.4 (7)C15—N5—C14—C130.8 (8)
C8—C5—C6B—C7B176.0 (5)C12—C13—C14—N5−1.8 (9)
C3A—C2—C7B—C6B33.5 (7)C14—N5—C15—C160.5 (6)
C7A—C2—C7B—C6B−82.0 (8)N5—C15—C16—C12−0.8 (6)
C3B—C2—C7B—C6B−6.0 (8)C13—C12—C16—C15−0.2 (5)
C1—C2—C7B—C6B177.1 (5)C11—C12—C16—C15179.7 (3)
C5—C6B—C7B—C26.8 (9)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.902.583 (3)135
N1—H1···O2i0.862.102.935 (3)165

Symmetry codes: (i) −x+2, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2164).

References

  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, L., Wang, Q. M., Huang, R. Q., Mao, C. H., Shang, J. & Bi, F. C. (2005). J. Agric. Food Chem.53, 38–41. [PubMed]
  • Foroumadi, A., Asadipour, A., Mirzaei, M., Karimi, J. & Emami, S. (2002). Farmaco, 57, 765–769. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Song, X. J., Feng, G. R., Chen, C. B., Zhang, Z. W. & Wang, Y. G. (2005). Chin. J. Org. Chem.25, 1587–1590.
  • Song, X.-J., Tan, X.-H., Li, Y.-H., Zhang, Z.-W. & Wang, Y.-G. (2005). Acta Cryst. E61, o3066–o3068.
  • Song, X. J., Tan, X. H. & Wang, Y. G. (2007). Phosphorus Sulfur Silicon, 182, 1907–1913.
  • Song, X. J., Tan, X. H. & Wang, Y. G. (2008). J. Chem. Crystallogr.38, 479–482.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography