PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2470.
Published online 2008 November 29. doi:  10.1107/S1600536808039251
PMCID: PMC2959836

1,4-Bis(4-chloro­phen­yl)butane-1,4-dione

Abstract

The mol­ecule of title compound, C16H12Cl2O2, is centrosymmetric. Thus, the asymmetric unit comprises two half-mol­ecules. The two benzene rings are coplanar in each independent molecule (dihedral angles = 0°). The crystal packing exhibits inter­molecular C—H(...)O hydrogen bonds and C—H(...)π inter­actions.

Related literature

For applications of the title compound, see: Rao et al. (2004 [triangle]); Stauffer & Neier (2000 [triangle]); Shridhar et al. (1982 [triangle]). For the preparation of the title compound, see: Stetter (1976 [triangle]); Nimgirawath et al. (1976 [triangle]); Yamamoto et al. (2003 [triangle]); Yuguchi et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2470-scheme1.jpg

Experimental

Crystal data

  • C16H12Cl2O2
  • M r = 307.16
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2470-efi1.jpg
  • a = 10.3663 (2) Å
  • b = 5.2532 (1) Å
  • c = 26.1125 (6) Å
  • β = 95.272 (2)°
  • V = 1415.97 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.46 mm−1
  • T = 298 (2) K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997 [triangle]) T min = 0.914, T max = 0.956
  • 14170 measured reflections
  • 2789 independent reflections
  • 1836 reflections with I > 2σ(I)
  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.117
  • S = 0.97
  • 2789 reflections
  • 181 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808039251/kp2197sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039251/kp2197Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Xiangfan University for financial support.

supplementary crystallographic information

Comment

1,4-Diketones are very useful intermediates for the synthesis of substituted furans, pyrroles and thiophenes via Paal-Knorr cyclization reaction (Rao et al., 2004; Stauffer et al., 2000; Shridhar et al., 1982). A variety of methods have been reported for the preparation of these 1,4-dicarbonyl compounds (Stetter et al., 1976; Yamamoto et al., 2003; Yuguchi et al., 2004).

The molecule is centrosymmetric. There are two halves of the molecules in the asymmetric unit (Fig. 1). The two phenyl rings are co-planar in both molecules. Intermolecular C—H···O hydrogen bonds and C—H···π interactions stabilize the crystal packing (Table 1).

Experimental

The title compound was synthesized as previously described by Nimgirawath et al. (1976). Colourless crystals suitable for X-ray data collection were obtained by slow evaporation of a 1:2 (v/v) ratio CH2Cl2:CH3OH solution at 293 K.

Refinement

All H atoms were refine independently; C—H (methyl H) = 0.96 Å, C—H (methine H) = 0.93Å and 0.93 Å for thiophene H. The constraint Uiso(H) = 1.2Ueq(C) or 1.5Ueq (methyl C) was applied.

Figures

Fig. 1.
View of the title molecule showing the atom-labelling scheme. The displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by spheres of arbitrary radius.

Crystal data

C16H12Cl2O2F000 = 632
Mr = 307.16Dx = 1.441 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3417 reflections
a = 10.3663 (2) Åθ = 2.6–23.1º
b = 5.25320 (10) ŵ = 0.46 mm1
c = 26.1125 (6) ÅT = 298 (2) K
β = 95.272 (2)ºBlock, colourless
V = 1415.97 (5) Å30.20 × 0.10 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2789 independent reflections
Radiation source: fine-focus sealed tube1836 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.058
T = 298(2) Kθmax = 26.0º
[var phi] and ω scansθmin = 1.6º
Absorption correction: multi-scan(SADABS; Sheldrick, 1997)h = −12→12
Tmin = 0.914, Tmax = 0.956k = −6→6
14170 measured reflectionsl = −31→32

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.117  w = 1/[σ2(Fo2) + (0.0637P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
2789 reflectionsΔρmax = 0.21 e Å3
181 parametersΔρmin = −0.23 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.3102 (2)0.4151 (4)0.32315 (8)0.0609 (5)
C20.3437 (2)0.2160 (4)0.35628 (8)0.0658 (6)
H20.40690.09950.34880.079*
C30.2824 (2)0.1933 (4)0.40024 (8)0.0612 (6)
H30.30410.05840.42250.073*
C40.18851 (19)0.3661 (3)0.41264 (8)0.0524 (5)
C50.1579 (2)0.5660 (4)0.37840 (8)0.0590 (5)
H50.09600.68510.38590.071*
C60.2175 (2)0.5899 (4)0.33398 (8)0.0627 (6)
H60.19550.72280.31130.075*
C70.1272 (2)0.3362 (4)0.46133 (8)0.0559 (5)
C80.0298 (2)0.5308 (4)0.47540 (7)0.0576 (5)
H8A−0.03860.54320.44760.069*
H8B0.07190.69550.47900.069*
C90.1559 (2)0.7318 (4)0.15908 (8)0.0593 (5)
C100.1743 (2)0.6200 (4)0.11264 (8)0.0623 (6)
H100.12750.47550.10190.075*
C110.2621 (2)0.7227 (4)0.08217 (8)0.0575 (5)
H110.27450.64590.05090.069*
C120.33228 (18)0.9383 (3)0.09714 (7)0.0508 (5)
C130.3118 (2)1.0476 (4)0.14417 (8)0.0628 (6)
H130.35811.19260.15490.075*
C140.2249 (2)0.9467 (4)0.17514 (8)0.0674 (6)
H140.21271.02200.20660.081*
C150.42674 (19)1.0574 (4)0.06459 (7)0.0537 (5)
C160.45259 (19)0.9285 (4)0.01517 (8)0.0558 (5)
H16A0.37130.9095−0.00610.067*
H16B0.48650.75940.02290.067*
Cl10.04740 (6)0.59996 (12)0.19828 (2)0.0828 (2)
Cl20.38806 (6)0.44975 (15)0.26764 (2)0.0908 (3)
O10.15594 (16)0.1582 (3)0.48988 (6)0.0830 (5)
O20.48192 (15)1.2536 (3)0.07810 (6)0.0746 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0561 (13)0.0641 (12)0.0619 (13)−0.0073 (11)0.0012 (10)−0.0094 (10)
C20.0571 (13)0.0598 (13)0.0800 (15)0.0045 (11)0.0034 (12)−0.0096 (12)
C30.0596 (14)0.0472 (11)0.0746 (14)0.0029 (10)−0.0055 (11)0.0030 (10)
C40.0524 (12)0.0432 (10)0.0596 (12)−0.0020 (9)−0.0061 (10)0.0006 (9)
C50.0639 (14)0.0499 (11)0.0632 (13)0.0086 (10)0.0063 (10)0.0010 (10)
C60.0705 (15)0.0559 (12)0.0609 (13)0.0026 (11)0.0023 (11)0.0044 (10)
C70.0566 (13)0.0454 (11)0.0637 (13)−0.0034 (9)−0.0049 (10)0.0052 (9)
C80.0648 (14)0.0473 (11)0.0600 (12)−0.0027 (10)0.0017 (10)0.0039 (9)
C90.0569 (13)0.0607 (12)0.0600 (13)0.0043 (10)0.0036 (10)0.0077 (10)
C100.0634 (14)0.0543 (12)0.0682 (14)−0.0080 (10)0.0007 (11)−0.0027 (10)
C110.0614 (13)0.0531 (11)0.0575 (12)−0.0005 (10)0.0036 (10)−0.0074 (9)
C120.0530 (12)0.0478 (10)0.0504 (11)0.0042 (9)−0.0017 (9)−0.0011 (9)
C130.0733 (15)0.0528 (12)0.0609 (13)−0.0079 (11)−0.0011 (11)−0.0067 (10)
C140.0807 (16)0.0673 (14)0.0543 (12)−0.0008 (12)0.0064 (11)−0.0065 (11)
C150.0502 (12)0.0520 (11)0.0577 (12)0.0030 (10)−0.0020 (9)−0.0021 (9)
C160.0504 (12)0.0559 (11)0.0599 (12)0.0011 (9)−0.0012 (9)−0.0014 (9)
Cl10.0788 (5)0.0941 (5)0.0772 (4)−0.0099 (3)0.0169 (3)0.0112 (3)
Cl20.0818 (5)0.1167 (6)0.0764 (4)0.0026 (4)0.0215 (3)−0.0058 (4)
O10.0957 (13)0.0697 (10)0.0855 (11)0.0224 (9)0.0175 (9)0.0298 (9)
O20.0803 (11)0.0631 (9)0.0819 (11)−0.0212 (8)0.0150 (8)−0.0150 (8)

Geometric parameters (Å, °)

C1—C61.377 (3)C9—C141.381 (3)
C1—C21.381 (3)C9—Cl11.733 (2)
C1—Cl21.732 (2)C10—C111.373 (3)
C2—C31.368 (3)C10—H100.9300
C2—H20.9300C11—C121.383 (3)
C3—C41.391 (3)C11—H110.9300
C3—H30.9300C12—C131.390 (3)
C4—C51.397 (3)C12—C151.492 (3)
C4—C71.481 (3)C13—C141.371 (3)
C5—C61.369 (3)C13—H130.9300
C5—H50.9300C14—H140.9300
C6—H60.9300C15—O21.215 (2)
C7—O11.216 (2)C15—C161.503 (3)
C7—C81.506 (3)C16—C16ii1.517 (4)
C8—C8i1.511 (4)C16—H16A0.9700
C8—H8A0.9700C16—H16B0.9700
C8—H8B0.9700Cl1—Cl23.8985 (9)
C9—C101.376 (3)
C6—C1—C2121.1 (2)C10—C9—Cl1120.01 (17)
C6—C1—Cl2119.31 (17)C14—C9—Cl1119.58 (16)
C2—C1—Cl2119.60 (18)C11—C10—C9119.75 (19)
C3—C2—C1118.8 (2)C11—C10—H10120.1
C3—C2—H2120.6C9—C10—H10120.1
C1—C2—H2120.6C10—C11—C12121.17 (19)
C2—C3—C4121.84 (19)C10—C11—H11119.4
C2—C3—H3119.1C12—C11—H11119.4
C4—C3—H3119.1C11—C12—C13117.95 (19)
C3—C4—C5117.68 (19)C11—C12—C15122.57 (17)
C3—C4—C7119.70 (18)C13—C12—C15119.47 (17)
C5—C4—C7122.62 (19)C14—C13—C12121.59 (19)
C6—C5—C4121.17 (19)C14—C13—H13119.2
C6—C5—H5119.4C12—C13—H13119.2
C4—C5—H5119.4C13—C14—C9119.2 (2)
C5—C6—C1119.39 (19)C13—C14—H14120.4
C5—C6—H6120.3C9—C14—H14120.4
C1—C6—H6120.3O2—C15—C12120.42 (18)
O1—C7—C4120.50 (19)O2—C15—C16120.99 (19)
O1—C7—C8120.30 (19)C12—C15—C16118.58 (17)
C4—C7—C8119.20 (16)C15—C16—C16ii113.6 (2)
C7—C8—C8i113.5 (2)C15—C16—H16A108.8
C7—C8—H8A108.9C16ii—C16—H16A108.8
C8i—C8—H8A108.9C15—C16—H16B108.8
C7—C8—H8B108.9C16ii—C16—H16B108.8
C8i—C8—H8B108.9H16A—C16—H16B107.7
H8A—C8—H8B107.7C9—Cl1—Cl275.29 (7)
C10—C9—C14120.4 (2)C1—Cl2—Cl186.46 (7)
C6—C1—C2—C30.5 (3)C10—C11—C12—C130.3 (3)
Cl2—C1—C2—C3179.23 (15)C10—C11—C12—C15−178.93 (18)
C1—C2—C3—C4−0.6 (3)C11—C12—C13—C140.0 (3)
C2—C3—C4—C50.2 (3)C15—C12—C13—C14179.26 (19)
C2—C3—C4—C7−178.57 (18)C12—C13—C14—C9−0.2 (3)
C3—C4—C5—C60.5 (3)C10—C9—C14—C130.2 (3)
C7—C4—C5—C6179.23 (18)Cl1—C9—C14—C13179.13 (16)
C4—C5—C6—C1−0.7 (3)C11—C12—C15—O2176.53 (19)
C2—C1—C6—C50.2 (3)C13—C12—C15—O2−2.7 (3)
Cl2—C1—C6—C5−178.55 (15)C11—C12—C15—C16−3.9 (3)
C3—C4—C7—O1−1.9 (3)C13—C12—C15—C16176.85 (17)
C5—C4—C7—O1179.45 (18)O2—C15—C16—C16ii−2.1 (3)
C3—C4—C7—C8177.44 (18)C12—C15—C16—C16ii178.39 (19)
C5—C4—C7—C8−1.2 (3)C10—C9—Cl1—Cl2107.86 (17)
O1—C7—C8—C8i−3.6 (3)C14—C9—Cl1—Cl2−71.11 (16)
C4—C7—C8—C8i177.0 (2)C6—C1—Cl2—Cl1−43.73 (16)
C14—C9—C10—C110.1 (3)C2—C1—Cl2—Cl1137.48 (16)
Cl1—C9—C10—C11−178.83 (15)C9—Cl1—Cl2—C1158.48 (10)
C9—C10—C11—C12−0.4 (3)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+2, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C8—H8B···O1iii0.972.593.553 (3)173
C11—H11···O1iv0.932.503.246 (2)138
C8—H8A···Cg1v0.972.983.876 (2)154

Symmetry codes: (iii) x, y+1, z; (iv) x, −y+1/2, z−1/2; (v) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2197).

References

  • Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Nimgirawath, S., Ritchie, E. & Taylor, W. C. (1976). Aust. J. Chem.29, 339–356.
  • Rao, H. S. P., Jothilingam, S. & Scheeren, H. W. (2004). Tetrahedron, 60, 1625–1630.
  • Sheldrick, G. M. (1997). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shridhar, D. R., Jogibhukta, M., Rao, P. S. & Handa, V. K. (1982). Synthesis, pp. 1061–1062.
  • Stauffer, F. & Neier, R. (2000). Org. Lett.2, 3535–3537. [PubMed]
  • Stetter, H. (1976). Angew. Chem. Int. Ed.15, 639–648.
  • Yamamoto, Y., Maekawa, H., Goda, S. & Nishiguchi, I. (2003). Org. Lett.5, 2755–2758. [PubMed]
  • Yuguchi, M., Tokuda, M. & Orito, K. (2004). J. Org. Chem.69, 908–914. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography