PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2258.
Published online 2008 November 8. doi:  10.1107/S1600536808034958
PMCID: PMC2959833

(E)-4-[(4-Nitro­phen­yl)diazen­yl]phenyl anthracene-9-carboxyl­ate

Abstract

In the title compound, C27H17N3O4, the azo group displays a trans conformation and the dihedral angles between the central benzene ring and the pendant anthracene and nitro­benzene rings are 82.94 (7) and 7.30 (9)°, respectively. In the crystal structure, weak C—H(...)O hydrogen bonds, likely associated with a dipole moment present on the mol­ecule, help to consolidate the packing.

Related literature

This structure is similar to the perviously reported compound (E)-2-{Eth­yl[4-(4-nitro­phenyl­diazen­yl)phen­yl]amino}ethyl anthracene-9-carboxyl­ate (Rodriguez, et al., 2008 [triangle]). For general background, see: Atassi et al. (1998 [triangle]); Becke (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2258-scheme1.jpg

Experimental

Crystal data

  • C27H17N3O4
  • M r = 447.44
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2258-efi1.jpg
  • a = 13.525 (2) Å
  • b = 8.6011 (14) Å
  • c = 18.956 (3) Å
  • β = 109.322 (3)°
  • V = 2080.9 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 173 (2) K
  • 0.20 × 0.18 × 0.05 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999 [triangle]) T min = 0.980, T max = 0.995
  • 14511 measured reflections
  • 3665 independent reflections
  • 2752 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.100
  • S = 1.03
  • 3665 reflections
  • 307 parameters
  • H-atom parameters constrained
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SMART (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: XSHELL (Bruker, 2001 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808034958/hb2827sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034958/hb2827Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE—AC04–94 A L85000.

supplementary crystallographic information

Comment

Atassi et al. (1998) has documented photoisomerization of the azobenzene in Disperse Red 1 (DR1) to a cis conformation under UV light, with decay back to the equilibrium trans species with removal of the UV light. In this manuscript we present another compound, (I), containing a trans azobenzene conformational state (Fig. 1). The displacement ellipsoids for most of the atoms are well defined. However, the O1 and O2 atoms at the termination of the nitroazobenzene unit do show subtle enlargement.

Figure 2 shows a packing arrangement and intermolecular interactions for (I). The nitroazobenzene portion is nearly planar as is the anthracene portion of the molecule. The anthracene is rotated from the nitroazobenzene through the carboxyl group. The title compound displays a head-to-toe configuration via weak C—H···O bonds as shown in Figure 2. Specifically, an O2 atom of one molecule makes a weak bond to H26 of the neighboring molecule with a bond length of 2.55 Å. The calculated dipole moment for a molecule of (I) is 7.6806 Debye using the B3LYP functional (Becke, 1993) with the 6–311 G(d,p) triple-zeta basis. This dipole moment likely drives the head-to-toe alignment of the molecules as illustrated in Figure 2.

The structure of (I) is similar in form to that of the previously reported ester (E)-2-{ethyl[4-(4-nitrophenyldiazenyl)phenyl]amino}ethyl anthracene-9-carboxylate (Rodriguez, et al., 2008), with the subtle difference relating to the absence of the ethyl-amino ligand in (I). As with the aformentioned compound, intermolecular interactions for the title compound are exclusively C—H···O in nature (Table 2). An additional interaction which bridges molecules in the a axis direction is also shown in Figure 2. This weak hydrogen bond is between the terminal carboxyl oxygen O4 and the neighboring H17 atom. The hydrogen bond shows a length of 2.57 Å and symmetrically bonds the two H atoms of the anthracene of each molecule.

Experimental

The title compound was synthesized from 9-anthracenecarboxylic acid and 4-(4-nitrophenyl)azophenol via a dicyclohexylcarbodiimide esterification in anhydrous dichloromethane. After filtration of insoluble side products and removal of solvent by rotary evaporation, the crude product was dissolved in dichloromethane and filtered through a silica gel plug. Evaporation of the solvent gave a red powder that was characterized by 1H-NMR, UV/Vis and FTIR. Red crystals of (I) were obtained by recrystallization from hot dichloromethane.

Figures

Fig. 1.
The molecular structure of (I) with 50% probability displacement ellipsoids for non-H atoms.
Fig. 2.
A packing diagram of (I) illustrating weak C—H···O hydrogen-bond interactions associated with terminal oxygen atoms O2 and O4.

Crystal data

C27H17N3O4F000 = 928
Mr = 447.44Dx = 1.428 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 100 reflections
a = 13.525 (2) Åθ = 1.6–25.0º
b = 8.6011 (14) ŵ = 0.10 mm1
c = 18.956 (3) ÅT = 173 (2) K
β = 109.322 (3)ºPlate, red
V = 2080.9 (6) Å30.20 × 0.18 × 0.05 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer3665 independent reflections
Radiation source: fine-focus sealed tube2752 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.038
Detector resolution: 0 pixels mm-1θmax = 25.0º
T = 173(2) Kθmin = 1.6º
[var phi] and ω scansh = −16→16
Absorption correction: multi-scan(SADABS; Sheldrick, 1999)k = −10→10
Tmin = 0.980, Tmax = 0.995l = −21→22
14511 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.100  w = 1/[σ2(Fo2) + (0.0388P)2 + 0.7361P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3665 reflectionsΔρmax = 0.39 e Å3
307 parametersΔρmin = −0.16 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s, except the e.s.d. in the dihedral angle between two least-square (l.s.) planes, are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.69229 (14)1.52655 (19)0.65761 (9)0.0352 (4)
N20.44775 (13)1.12430 (19)0.43308 (9)0.0350 (4)
N30.48826 (13)1.08369 (18)0.38663 (9)0.0333 (4)
O10.78660 (13)1.5368 (2)0.66951 (9)0.0581 (5)
O20.64573 (13)1.60250 (18)0.69126 (8)0.0486 (4)
O30.26778 (10)0.69438 (15)0.15211 (7)0.0304 (3)
O40.10043 (11)0.77469 (17)0.12517 (8)0.0416 (4)
C10.63159 (15)1.4180 (2)0.59981 (10)0.0272 (4)
C20.52768 (15)1.3952 (2)0.59086 (11)0.0322 (5)
H20.49571.44760.62180.039*
C30.47087 (16)1.2945 (2)0.53590 (11)0.0334 (5)
H30.39931.27490.52950.040*
C40.51755 (15)1.2218 (2)0.49006 (10)0.0289 (5)
C50.62352 (16)1.2433 (2)0.50109 (11)0.0307 (5)
H50.65561.19070.47030.037*
C60.68173 (16)1.3411 (2)0.55702 (11)0.0304 (5)
H60.75451.35550.56600.037*
C70.42162 (15)0.9862 (2)0.32817 (10)0.0298 (5)
C80.31857 (16)0.9475 (2)0.31890 (11)0.0326 (5)
H80.28600.98740.35240.039*
C90.26266 (16)0.8502 (2)0.26061 (11)0.0316 (5)
H90.19240.82180.25430.038*
C100.31210 (15)0.7960 (2)0.21211 (10)0.0273 (4)
C110.41510 (15)0.8342 (2)0.22141 (11)0.0296 (5)
H110.44800.79490.18790.036*
C120.46943 (16)0.9293 (2)0.27953 (11)0.0318 (5)
H120.54010.95600.28620.038*
C130.16358 (15)0.6938 (2)0.11132 (11)0.0281 (4)
C140.14418 (14)0.5854 (2)0.04656 (10)0.0258 (4)
C150.09289 (14)0.6443 (2)−0.02570 (11)0.0265 (4)
C160.05487 (14)0.8006 (2)−0.04087 (12)0.0313 (5)
H160.06260.8699−0.00040.038*
C170.00814 (16)0.8515 (2)−0.11171 (12)0.0383 (5)
H17−0.01590.9559−0.12010.046*
C18−0.00531 (17)0.7513 (3)−0.17329 (12)0.0426 (6)
H18−0.03910.7882−0.22270.051*
C190.02967 (16)0.6035 (2)−0.16205 (12)0.0381 (5)
H190.02060.5375−0.20390.046*
C200.07981 (14)0.5446 (2)−0.08895 (11)0.0287 (5)
C210.11527 (14)0.3921 (2)−0.07705 (11)0.0296 (5)
H210.10700.3269−0.11910.036*
C220.16242 (14)0.3316 (2)−0.00585 (11)0.0256 (4)
C230.19358 (15)0.1725 (2)0.00493 (12)0.0309 (5)
H230.18210.1069−0.03730.037*
C240.23912 (15)0.1134 (2)0.07422 (12)0.0345 (5)
H240.25970.00730.08030.041*
C250.25608 (15)0.2095 (2)0.13743 (12)0.0339 (5)
H250.28860.16770.18600.041*
C260.22641 (15)0.3615 (2)0.12975 (11)0.0312 (5)
H260.23760.42360.17320.037*
C270.17899 (14)0.4293 (2)0.05797 (11)0.0260 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0431 (11)0.0312 (10)0.0275 (10)−0.0035 (8)0.0066 (8)−0.0032 (8)
N20.0409 (10)0.0305 (10)0.0359 (10)0.0027 (8)0.0158 (9)0.0012 (8)
N30.0388 (10)0.0277 (9)0.0353 (10)0.0021 (8)0.0148 (9)0.0029 (8)
O10.0400 (10)0.0717 (12)0.0571 (11)−0.0170 (9)0.0088 (8)−0.0273 (9)
O20.0602 (11)0.0453 (9)0.0393 (9)0.0034 (8)0.0155 (8)−0.0165 (8)
O30.0253 (7)0.0304 (8)0.0328 (8)−0.0026 (6)0.0060 (6)−0.0102 (6)
O40.0307 (8)0.0404 (9)0.0486 (9)0.0042 (7)0.0062 (7)−0.0176 (7)
C10.0340 (11)0.0229 (10)0.0210 (10)−0.0012 (8)0.0040 (9)0.0008 (8)
C20.0352 (12)0.0302 (11)0.0306 (11)0.0052 (9)0.0102 (9)−0.0003 (9)
C30.0295 (11)0.0335 (11)0.0348 (12)−0.0004 (9)0.0074 (9)0.0016 (9)
C40.0348 (12)0.0224 (10)0.0241 (10)−0.0027 (9)0.0023 (9)0.0017 (8)
C50.0401 (12)0.0276 (11)0.0263 (11)0.0024 (9)0.0135 (9)−0.0016 (9)
C60.0308 (11)0.0299 (11)0.0309 (11)−0.0023 (9)0.0106 (9)0.0009 (9)
C70.0351 (12)0.0226 (10)0.0253 (11)−0.0047 (9)0.0013 (9)0.0003 (8)
C80.0467 (13)0.0280 (11)0.0246 (11)0.0042 (9)0.0137 (10)0.0006 (9)
C90.0327 (12)0.0317 (11)0.0296 (11)−0.0027 (9)0.0094 (9)−0.0003 (9)
C100.0343 (11)0.0202 (10)0.0236 (10)−0.0005 (8)0.0045 (9)−0.0015 (8)
C110.0316 (11)0.0270 (10)0.0282 (11)−0.0010 (9)0.0071 (9)−0.0018 (9)
C120.0314 (11)0.0301 (11)0.0303 (11)−0.0035 (9)0.0056 (9)−0.0022 (9)
C130.0271 (11)0.0222 (10)0.0337 (11)−0.0021 (8)0.0083 (9)−0.0007 (9)
C140.0212 (10)0.0246 (10)0.0304 (11)−0.0045 (8)0.0069 (8)−0.0032 (8)
C150.0202 (10)0.0244 (10)0.0343 (11)−0.0031 (8)0.0083 (9)−0.0007 (9)
C160.0266 (11)0.0249 (10)0.0408 (13)−0.0026 (8)0.0091 (9)−0.0020 (9)
C170.0350 (12)0.0281 (11)0.0482 (14)0.0031 (9)0.0092 (11)0.0068 (10)
C180.0461 (14)0.0416 (13)0.0358 (13)0.0042 (11)0.0076 (11)0.0094 (10)
C190.0422 (13)0.0392 (13)0.0316 (12)0.0006 (10)0.0105 (10)−0.0004 (10)
C200.0256 (10)0.0289 (11)0.0318 (11)−0.0015 (8)0.0097 (9)−0.0010 (9)
C210.0295 (11)0.0299 (11)0.0301 (11)−0.0036 (9)0.0108 (9)−0.0062 (9)
C220.0213 (10)0.0237 (10)0.0319 (11)−0.0034 (8)0.0091 (9)−0.0039 (8)
C230.0319 (11)0.0251 (10)0.0378 (12)−0.0008 (9)0.0142 (10)−0.0050 (9)
C240.0336 (12)0.0227 (10)0.0466 (14)−0.0001 (9)0.0123 (10)0.0022 (10)
C250.0313 (11)0.0308 (11)0.0353 (12)−0.0014 (9)0.0053 (9)0.0056 (9)
C260.0319 (11)0.0280 (11)0.0314 (12)−0.0040 (9)0.0071 (9)−0.0009 (9)
C270.0209 (10)0.0248 (10)0.0316 (11)−0.0044 (8)0.0078 (8)−0.0019 (8)

Geometric parameters (Å, °)

N1—O11.223 (2)C12—H120.9500
N1—O21.223 (2)C13—C141.494 (3)
N1—C11.467 (2)C14—C151.409 (3)
N2—N31.231 (2)C14—C271.416 (3)
N2—C41.445 (2)C15—C161.434 (3)
N3—C71.443 (2)C15—C201.437 (3)
O3—C131.365 (2)C16—C171.354 (3)
O3—C101.402 (2)C16—H160.9500
O4—C131.196 (2)C17—C181.413 (3)
C1—C21.373 (3)C17—H170.9500
C1—C61.385 (3)C18—C191.349 (3)
C2—C31.377 (3)C18—H180.9500
C2—H20.9500C19—C201.420 (3)
C3—C41.381 (3)C19—H190.9500
C3—H30.9500C20—C211.389 (3)
C4—C51.391 (3)C21—C221.389 (3)
C5—C61.378 (3)C21—H210.9500
C5—H50.9500C22—C231.426 (3)
C6—H60.9500C22—C271.429 (3)
C7—C121.379 (3)C23—C241.352 (3)
C7—C81.387 (3)C23—H230.9500
C8—C91.393 (3)C24—C251.411 (3)
C8—H80.9500C24—H240.9500
C9—C101.384 (3)C25—C261.361 (3)
C9—H90.9500C25—H250.9500
C10—C111.385 (3)C26—C271.423 (3)
C11—C121.374 (3)C26—H260.9500
C11—H110.9500
O1—N1—O2123.42 (18)O3—C13—C14109.61 (15)
O1—N1—C1118.41 (17)C15—C14—C27121.42 (17)
O2—N1—C1118.17 (18)C15—C14—C13118.08 (16)
N3—N2—C4111.35 (17)C27—C14—C13120.48 (17)
N2—N3—C7113.66 (17)C14—C15—C16124.09 (18)
C13—O3—C10123.10 (14)C14—C15—C20118.80 (17)
C2—C1—C6122.62 (18)C16—C15—C20117.09 (17)
C2—C1—N1118.71 (17)C17—C16—C15121.37 (19)
C6—C1—N1118.67 (17)C17—C16—H16119.3
C1—C2—C3118.39 (19)C15—C16—H16119.3
C1—C2—H2120.8C16—C17—C18120.84 (19)
C3—C2—H2120.8C16—C17—H17119.6
C2—C3—C4120.25 (19)C18—C17—H17119.6
C2—C3—H3119.9C19—C18—C17120.1 (2)
C4—C3—H3119.9C19—C18—H18119.9
C3—C4—C5120.56 (18)C17—C18—H18119.9
C3—C4—N2114.30 (17)C18—C19—C20121.3 (2)
C5—C4—N2125.14 (18)C18—C19—H19119.3
C6—C5—C4119.65 (18)C20—C19—H19119.3
C6—C5—H5120.2C21—C20—C19121.55 (18)
C4—C5—H5120.2C21—C20—C15119.19 (18)
C5—C6—C1118.43 (18)C19—C20—C15119.26 (18)
C5—C6—H6120.8C22—C21—C20122.30 (18)
C1—C6—H6120.8C22—C21—H21118.8
C12—C7—C8120.27 (18)C20—C21—H21118.8
C12—C7—N3114.06 (17)C21—C22—C23121.17 (17)
C8—C7—N3125.67 (18)C21—C22—C27119.68 (17)
C7—C8—C9120.27 (18)C23—C22—C27119.15 (18)
C7—C8—H8119.9C24—C23—C22121.19 (19)
C9—C8—H8119.9C24—C23—H23119.4
C10—C9—C8118.32 (19)C22—C23—H23119.4
C10—C9—H9120.8C23—C24—C25119.90 (19)
C8—C9—H9120.8C23—C24—H24120.0
C9—C10—C11121.49 (18)C25—C24—H24120.0
C9—C10—O3125.30 (17)C26—C25—C24120.85 (19)
C11—C10—O3113.16 (16)C26—C25—H25119.6
C12—C11—C10119.47 (18)C24—C25—H25119.6
C12—C11—H11120.3C25—C26—C27121.29 (19)
C10—C11—H11120.3C25—C26—H26119.4
C11—C12—C7120.18 (19)C27—C26—H26119.4
C11—C12—H12119.9C14—C27—C26123.82 (17)
C7—C12—H12119.9C14—C27—C22118.54 (17)
O4—C13—O3123.49 (17)C26—C27—C22117.60 (17)
O4—C13—C14126.81 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C26—H26···O2i0.952.543.273 (3)134
C17—H17···O4ii0.952.573.509 (3)169

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2827).

References

  • Atassi, Y., Chauvin, J., Delaire, J. A., Delouis, J. F., Fanton-Maltey, I. & Nakatani, K. (1998). Pure Appl. Chem.70, 2157–2166.
  • Becke, A. D. (1993). J. Chem. Phys.98, 5648–5652.
  • Bruker (2001). SMART, XSHELL and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Rodriguez, M. A., Zifer, T., Vance, A. L., Wong, B. M. & Leonard, F. (2008). Acta Cryst. E64, o595. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1999). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography