PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1524.
Published online 2008 November 13. doi:  10.1107/S1600536808036490
PMCID: PMC2959823

catena-Poly[[[(dimethyl­malonato-κ2 O:O′)(perchlorato-κO)copper(II)]-μ-bis­(3-pyridylmeth­yl)piperazinediium-κ2 N 1′:N 4′] perchlorate dihydrate]

Abstract

In the title compound, {[Cu(C5H6O4)(ClO4)(C16H22N4)]ClO4·2H2O}n, square-pyramidally coordinated Cu atoms with perchlorate and dimethyl­malonate ligands are connected into cationic sinusoidal coordination polymer chains by doubly protonated bis­(3-pyridylmeth­yl)piperazine (3-bpmp) ligands. The chains aggregate into pseudo-layers parallel to the (101) crystal planes by N—H(...)O hydrogen bonding. Unligated perchlorate anions and water mol­ecules of crystallization provide additional hydrogen bonding between pseudo-layers.

Related literature

For copper carboxyl­ate coordination polymers containing 3-bpmp, see: Johnston et al. (2008 [triangle]). For the synthesis of 3-bpmp, see: Pocic et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1524-scheme1.jpg

Experimental

Crystal data

  • [Cu(C5H6O4)(ClO4)(C16H22N4)]ClO4·2H2O
  • M r = 698.95
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1524-efi1.jpg
  • a = 9.6284 (15) Å
  • b = 10.5140 (16) Å
  • c = 14.061 (2) Å
  • α = 86.950 (2)°
  • β = 82.634 (2)°
  • γ = 84.638 (2)°
  • V = 1404.3 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.04 mm−1
  • T = 173 (2) K
  • 0.40 × 0.30 × 0.15 mm

Data collection

  • Bruker SMART 1K diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.680, T max = 0.859
  • 14378 measured reflections
  • 6309 independent reflections
  • 4904 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.099
  • S = 1.05
  • 6309 reflections
  • 397 parameters
  • 8 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.57 e Å−3
  • Δρmin = −0.44 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Crystal Maker (Palmer, 2007 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808036490/lh2730sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036490/lh2730Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund and Michigan State University for funding this work.

supplementary crystallographic information

Comment

In comparison to coordination polymers based on the rigid rod tether 4,4'- bipyridine, extended phases based on the flexible and hydrogen-bonding capable bis(3-pyridylmethyl)piperazine (3-bpmp) ligand are much less common (Johnston et al., 2008).

The asymmetric unit of the title compound contains a divalent copper atom, two halves of two 3-bpmp molecules protonated at their piperazinyl nitrogen atoms, one dimethylmalonate dianion, one bound and one unbound perchlorate ion and two water molecules of crystallization (Figure 1). The Cu atoms are square pyramidally coordinated in a {CuN2O3} arrangement, with the basal plane occupied by two cis N atom donors from two crystallographically distinct 3-bpmp ligands and two cis O atom donors from a dimethylmalonate ligand in a 1,3-chelating binding mode. The apical position is filled by a ligated perchlorate anion.

The 3-bpmp ligands link the Cu atoms into sinusoidal cationic coordination polymer chains with formulation [Cu(3-bpmpH2)(dimethylmalonate)(ClO4)]nn+ (Figure 2), in which the through ligand Cu···Cu contact distance is 15.441 Å. The "wavelength" of this chain, defined by unbridged Cu···Cu contacts, is 15.991 Å. The chains are aligned parallel to the [1 0 1] crystal direction.

Neighboring chains interdigitate and aggregate into a pseudolayer (Figure 3) parallel to the (1 0 1) crystal plane by N—H···O hydrogen bonding between protonated piperazinyl N atoms and unligated dimethylmalonate O atoms. These stack into three dimensions (Figure 4) through additional hydrogen bonding patterns involving unligated perchlorate anions and water molecule dimers, and dimethylmalonate O atoms within the coordination polymer chains.

Experimental

All chemicals were obtained commercially, except for 3-bpmp which was synthesized by a literature method (Pocic et al., 2005). Copper perchlorate hexahydrate (19 mg, 0.051 mmol) and dimethylmalonic acid (7 mg, 0.05 mmol) were dissolved in 3 ml water in a glass vial. A 1 ml aliquot of a 1:1 water:ethanol solution was carefully layered onto the aqueous solution, followed by 3 ml of an ethanolic solution of 3-bpmp (27 mg, 0.10 mmol). Blue blocks of the title compound formed after 1 week.

Refinement

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 - 0.99 Å and refined in riding mode with Uiso = 1.2Ueq(C) or 1.5Ueq(C) for methyl C atoms. All H atoms bound to O atoms were found via Fourier difference map, restrained with O—H = 0.89 Å, and refined with Uiso=1.2Ueq(O). All H atoms bound to N atoms were found via Fourier difference map, restrained with N—H = 0.89 Å, and refined with Uiso=1.2Ueq(N).

Figures

Fig. 1.
Coordination environment of the title compound, showing 50% probability ellipsoids and atom numbering scheme. Hydrogen atoms are not shown. Color codes: dark blue Cu, light blue N, red O, black C, green Cl and orange O atoms of water molecules.
Fig. 2.
A single cationic [Cu(dimethylmalonate)(ClO4)(3-bpmpH2)]n chain in the title compound.
Fig. 3.
A supramolecular [Cu(dimethylmalonate)(ClO4)(3-bpmpH2)]n layer in the title compound. Hydrogen bonding between protonated piperazinyl N atoms and unligated dimethylmalonate carboxylate O atoms is shown as dashed lines.
Fig. 4.
Packing diagram illustrating the interaction of pseudolayers via hydrogen bonding involving the dimethylmalonate carboxylate O atoms, co-crystallized water molecules, and unligated perchlorate anions.

Crystal data

[Cu(C5H6O4)(ClO4)(C16H22N4)]ClO4·2H2OZ = 2
Mr = 698.95F000 = 722
Triclinic, P1Dx = 1.653 Mg m3
a = 9.6284 (15) ÅMo Kα radiation λ = 0.71073 Å
b = 10.5140 (16) ÅCell parameters from 14378 reflections
c = 14.061 (2) Åθ = 1.5–28.3º
α = 86.950 (2)ºµ = 1.04 mm1
β = 82.634 (2)ºT = 173 (2) K
γ = 84.638 (2)ºBlock, blue
V = 1404.3 (4) Å30.40 × 0.30 × 0.15 mm

Data collection

Bruker SMART 1K diffractometer6309 independent reflections
Radiation source: fine-focus sealed tube4904 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.035
T = 173(2) Kθmax = 28.3º
ω scansθmin = 1.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −12→12
Tmin = 0.680, Tmax = 0.859k = −13→13
14378 measured reflectionsl = −18→18

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099  w = 1/[σ2(Fo2) + (0.0402P)2 + 1.0163P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
6309 reflectionsΔρmax = 0.57 e Å3
397 parametersΔρmin = −0.44 e Å3
8 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.73682 (3)0.38286 (3)0.22768 (2)0.01649 (9)
Cl10.52659 (6)0.15993 (6)0.15616 (4)0.01940 (14)
Cl20.04531 (7)0.26708 (7)0.67794 (5)0.02767 (17)
O10.89350 (18)0.26684 (16)0.17600 (12)0.0185 (4)
O1W−0.3036 (3)0.0931 (2)0.7673 (2)0.0524 (7)
H1WA−0.221 (3)0.124 (3)0.747 (3)0.063*
H1WB−0.284 (4)0.013 (2)0.785 (3)0.063*
O21.06366 (18)0.11347 (16)0.18831 (12)0.0196 (4)
O2W0.6049 (5)0.2872 (3)−0.1037 (2)0.0946 (12)
H2WA0.573 (6)0.247 (4)−0.045 (2)0.114*
H2WB0.602 (6)0.218 (4)−0.143 (3)0.114*
O30.71336 (18)0.28139 (17)0.34603 (13)0.0211 (4)
O40.78008 (19)0.12856 (17)0.44779 (13)0.0211 (4)
O50.6183 (2)0.07458 (18)0.20754 (14)0.0282 (5)
O60.5848 (2)0.28179 (18)0.13822 (15)0.0287 (5)
O70.5127 (2)0.1087 (2)0.06554 (15)0.0362 (5)
O80.3908 (2)0.1798 (2)0.21162 (16)0.0370 (5)
O90.1580 (3)0.1796 (2)0.70439 (19)0.0536 (7)
O100.0031 (3)0.3535 (2)0.75267 (17)0.0514 (7)
O110.0911 (3)0.3375 (3)0.59195 (18)0.0571 (7)
O12−0.0708 (3)0.2017 (2)0.6593 (2)0.0650 (9)
N10.7670 (2)0.50054 (19)0.11139 (15)0.0167 (5)
N20.8888 (2)0.91571 (19)0.00109 (15)0.0144 (4)
H2N0.908 (3)0.893 (2)−0.0593 (13)0.017*
N30.5816 (2)0.50287 (19)0.29083 (15)0.0182 (5)
N40.4942 (2)0.8624 (2)0.49802 (15)0.0156 (4)
H4N0.3982 (18)0.863 (3)0.514 (2)0.019*
C10.9729 (3)0.1943 (2)0.22604 (18)0.0153 (5)
C20.9626 (3)0.2108 (2)0.33488 (18)0.0166 (5)
C30.8085 (3)0.2046 (2)0.37928 (18)0.0161 (5)
C41.0062 (3)0.3455 (3)0.3502 (2)0.0300 (7)
H4A0.94510.41020.31900.045*
H4B1.10410.35160.32230.045*
H4C0.99690.36000.41910.045*
C51.0578 (3)0.1103 (3)0.3830 (2)0.0255 (6)
H5A1.04830.12420.45200.038*
H5B1.15570.11720.35530.038*
H5C1.03090.02500.37280.038*
C110.7887 (3)0.4505 (3)0.02408 (19)0.0221 (6)
H110.79370.36020.02010.027*
C120.8040 (3)0.5242 (3)−0.0596 (2)0.0246 (6)
H120.81970.4854−0.12000.029*
C130.7962 (3)0.6561 (3)−0.05452 (19)0.0211 (6)
H130.80420.7092−0.11140.025*
C140.7766 (3)0.7096 (2)0.03496 (19)0.0169 (5)
C150.7619 (3)0.6285 (2)0.11544 (19)0.0166 (5)
H150.74750.66490.17670.020*
C160.7611 (3)0.8529 (2)0.0465 (2)0.0196 (6)
H16A0.67800.89060.01690.024*
H16B0.74470.87040.11570.024*
C171.0141 (3)0.8795 (2)0.05230 (18)0.0164 (5)
H17A1.03440.78550.05390.020*
H17B0.99390.90700.11930.020*
C180.8594 (3)1.0583 (2)−0.00249 (19)0.0165 (5)
H18A0.83651.08880.06360.020*
H18B0.77741.0827−0.03750.020*
C210.4487 (3)0.5093 (3)0.2703 (2)0.0247 (6)
H210.42710.46120.21970.030*
C220.3425 (3)0.5851 (3)0.3216 (2)0.0307 (7)
H220.24870.58710.30690.037*
C230.3727 (3)0.6571 (3)0.3935 (2)0.0254 (6)
H230.30010.70850.42930.031*
C240.5109 (3)0.6542 (2)0.41357 (18)0.0187 (5)
C250.6108 (3)0.5742 (2)0.36102 (18)0.0176 (5)
H250.70500.56940.37530.021*
C260.5575 (3)0.7270 (2)0.49164 (19)0.0196 (6)
H26A0.53290.68120.55400.023*
H26B0.66110.72720.48070.023*
C270.5498 (3)0.9241 (2)0.57676 (18)0.0194 (6)
H27A0.65250.92820.56060.023*
H27B0.53360.87140.63690.023*
C280.5198 (3)0.9422 (2)0.40762 (18)0.0174 (5)
H28A0.48090.90380.35510.021*
H28B0.62220.94570.38910.021*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.01812 (17)0.01517 (16)0.01464 (17)0.00267 (12)0.00069 (12)−0.00020 (12)
Cl10.0194 (3)0.0213 (3)0.0175 (3)−0.0024 (2)−0.0016 (2)−0.0016 (2)
Cl20.0217 (3)0.0271 (4)0.0340 (4)−0.0028 (3)−0.0008 (3)−0.0043 (3)
O10.0208 (9)0.0205 (9)0.0129 (9)0.0050 (7)−0.0027 (7)−0.0007 (7)
O1W0.0443 (15)0.0369 (14)0.074 (2)−0.0042 (12)−0.0019 (14)0.0062 (14)
O20.0199 (9)0.0211 (9)0.0160 (9)0.0040 (8)0.0009 (7)−0.0013 (7)
O2W0.160 (4)0.070 (2)0.050 (2)−0.014 (2)0.005 (2)0.0045 (17)
O30.0181 (9)0.0240 (10)0.0182 (10)0.0053 (8)0.0020 (7)0.0040 (8)
O40.0197 (9)0.0232 (10)0.0179 (10)0.0010 (8)0.0024 (7)0.0048 (8)
O50.0284 (11)0.0276 (11)0.0268 (11)0.0047 (9)−0.0029 (9)0.0028 (9)
O60.0333 (11)0.0223 (10)0.0330 (12)−0.0087 (9)−0.0098 (9)0.0009 (9)
O70.0451 (13)0.0387 (13)0.0287 (12)−0.0031 (10)−0.0144 (10)−0.0129 (10)
O80.0193 (10)0.0534 (14)0.0336 (12)0.0031 (10)0.0056 (9)0.0099 (11)
O90.0453 (15)0.0555 (16)0.0568 (17)0.0255 (12)−0.0116 (13)−0.0118 (13)
O100.0655 (17)0.0493 (15)0.0382 (14)0.0187 (13)−0.0128 (13)−0.0165 (12)
O110.0573 (17)0.079 (2)0.0366 (15)−0.0206 (15)−0.0037 (12)0.0089 (14)
O120.0332 (14)0.0416 (15)0.123 (3)−0.0146 (11)−0.0043 (15)−0.0191 (16)
N10.0172 (11)0.0154 (10)0.0169 (11)−0.0011 (8)0.0000 (9)−0.0012 (9)
N20.0158 (10)0.0127 (10)0.0138 (11)−0.0002 (8)0.0014 (8)−0.0008 (8)
N30.0207 (11)0.0150 (10)0.0175 (12)0.0014 (9)0.0005 (9)0.0010 (9)
N40.0148 (10)0.0183 (11)0.0130 (11)−0.0004 (9)0.0012 (8)−0.0016 (8)
C10.0150 (12)0.0135 (12)0.0169 (13)−0.0041 (10)0.0018 (10)0.0004 (10)
C20.0165 (13)0.0186 (13)0.0148 (13)−0.0019 (10)−0.0015 (10)−0.0015 (10)
C30.0177 (13)0.0142 (12)0.0158 (13)0.0000 (10)0.0013 (10)−0.0052 (10)
C40.0348 (17)0.0286 (16)0.0288 (17)−0.0155 (13)−0.0019 (13)−0.0060 (13)
C50.0197 (14)0.0377 (17)0.0172 (14)0.0049 (12)−0.0015 (11)0.0023 (12)
C110.0282 (15)0.0166 (13)0.0208 (14)0.0000 (11)−0.0007 (11)−0.0025 (11)
C120.0336 (16)0.0228 (14)0.0167 (14)−0.0034 (12)0.0009 (12)−0.0040 (11)
C130.0248 (14)0.0204 (13)0.0175 (14)−0.0060 (11)0.0005 (11)0.0030 (11)
C140.0139 (12)0.0141 (12)0.0224 (14)−0.0037 (10)0.0003 (10)0.0005 (10)
C150.0174 (13)0.0161 (12)0.0164 (13)−0.0031 (10)−0.0006 (10)−0.0028 (10)
C160.0171 (13)0.0155 (12)0.0250 (15)−0.0033 (10)0.0037 (11)0.0000 (11)
C170.0189 (13)0.0128 (12)0.0170 (13)0.0008 (10)−0.0031 (10)0.0029 (10)
C180.0165 (12)0.0117 (11)0.0203 (14)0.0010 (10)−0.0009 (10)0.0003 (10)
C210.0272 (15)0.0213 (14)0.0261 (15)0.0033 (12)−0.0073 (12)−0.0052 (12)
C220.0218 (15)0.0313 (16)0.0394 (19)0.0047 (12)−0.0073 (13)−0.0101 (14)
C230.0203 (14)0.0266 (15)0.0283 (16)0.0031 (12)0.0004 (12)−0.0088 (12)
C240.0209 (13)0.0172 (13)0.0172 (13)−0.0013 (10)0.0000 (11)0.0011 (10)
C250.0177 (13)0.0171 (12)0.0175 (13)−0.0008 (10)−0.0007 (10)0.0004 (10)
C260.0198 (13)0.0186 (13)0.0190 (14)0.0035 (11)−0.0010 (11)−0.0020 (11)
C270.0244 (14)0.0211 (13)0.0133 (13)−0.0012 (11)−0.0041 (11)−0.0018 (10)
C280.0212 (13)0.0197 (13)0.0107 (12)−0.0030 (10)0.0016 (10)−0.0018 (10)

Geometric parameters (Å, °)

Cu1—O31.9283 (18)C4—H4C0.9800
Cu1—O11.9394 (17)C5—H5A0.9800
Cu1—N12.005 (2)C5—H5B0.9800
Cu1—N32.010 (2)C5—H5C0.9800
Cu1—O62.400 (2)C11—C121.374 (4)
Cl1—O51.433 (2)C11—H110.9500
Cl1—O71.436 (2)C12—C131.387 (4)
Cl1—O81.438 (2)C12—H120.9500
Cl1—O61.443 (2)C13—C141.389 (4)
Cl2—O101.420 (2)C13—H130.9500
Cl2—O121.425 (3)C14—C151.381 (3)
Cl2—O111.426 (3)C14—C161.516 (3)
Cl2—O91.429 (2)C15—H150.9500
O1—C11.278 (3)C16—H16A0.9900
O1W—H1WA0.894 (18)C16—H16B0.9900
O1W—H1WB0.875 (18)C17—C18i1.511 (3)
O2—C11.248 (3)C17—H17A0.9900
O2W—H2WA0.929 (19)C17—H17B0.9900
O2W—H2WB0.941 (19)C18—C17i1.511 (3)
O3—C31.281 (3)C18—H18A0.9900
O4—C31.239 (3)C18—H18B0.9900
N1—C111.345 (3)C21—C221.386 (4)
N1—C151.346 (3)C21—H210.9500
N2—C171.492 (3)C22—C231.370 (4)
N2—C181.499 (3)C22—H220.9500
N2—C161.503 (3)C23—C241.392 (4)
N2—H2N0.887 (17)C23—H230.9500
N3—C211.342 (4)C24—C251.383 (3)
N3—C251.343 (3)C24—C261.507 (4)
N4—C281.492 (3)C25—H250.9500
N4—C271.493 (3)C26—H26A0.9900
N4—C261.498 (3)C26—H26B0.9900
N4—H4N0.923 (17)C27—C28ii1.514 (3)
C1—C21.539 (4)C27—H27A0.9900
C2—C51.522 (3)C27—H27B0.9900
C2—C31.540 (3)C28—C27ii1.514 (3)
C2—C41.548 (4)C28—H28A0.9900
C4—H4A0.9800C28—H28B0.9900
C4—H4B0.9800
O3—Cu1—O191.49 (7)H5B—C5—H5C109.5
O3—Cu1—N1174.84 (8)N1—C11—C12122.9 (2)
O1—Cu1—N190.38 (8)N1—C11—H11118.6
O3—Cu1—N385.44 (8)C12—C11—H11118.6
O1—Cu1—N3175.47 (8)C11—C12—C13118.9 (3)
N1—Cu1—N392.41 (8)C11—C12—H12120.5
O3—Cu1—O699.44 (7)C13—C12—H12120.5
O1—Cu1—O689.56 (7)C12—C13—C14119.1 (2)
N1—Cu1—O685.38 (8)C12—C13—H13120.5
N3—Cu1—O694.23 (8)C14—C13—H13120.5
O5—Cl1—O7110.03 (13)C15—C14—C13118.2 (2)
O5—Cl1—O8110.26 (12)C15—C14—C16119.5 (2)
O7—Cl1—O8109.95 (14)C13—C14—C16122.2 (2)
O5—Cl1—O6109.60 (12)N1—C15—C14123.3 (2)
O7—Cl1—O6108.42 (13)N1—C15—H15118.4
O8—Cl1—O6108.54 (13)C14—C15—H15118.4
O10—Cl2—O12110.28 (17)N2—C16—C14112.3 (2)
O10—Cl2—O11109.08 (17)N2—C16—H16A109.1
O12—Cl2—O11107.14 (19)C14—C16—H16A109.1
O10—Cl2—O9109.14 (15)N2—C16—H16B109.1
O12—Cl2—O9111.41 (17)C14—C16—H16B109.1
O11—Cl2—O9109.75 (16)H16A—C16—H16B107.9
C1—O1—Cu1125.13 (16)N2—C17—C18i110.5 (2)
H1WA—O1W—H1WB106 (3)N2—C17—H17A109.5
H2WA—O2W—H2WB98 (3)C18i—C17—H17A109.5
C3—O3—Cu1125.71 (16)N2—C17—H17B109.5
Cl1—O6—Cu1129.66 (12)C18i—C17—H17B109.5
C11—N1—C15117.6 (2)H17A—C17—H17B108.1
C11—N1—Cu1118.88 (17)N2—C18—C17i110.23 (19)
C15—N1—Cu1123.45 (17)N2—C18—H18A109.6
C17—N2—C18109.43 (19)C17i—C18—H18A109.6
C17—N2—C16112.43 (19)N2—C18—H18B109.6
C18—N2—C16110.56 (18)C17i—C18—H18B109.6
C17—N2—H2N109.4 (18)H18A—C18—H18B108.1
C18—N2—H2N106.6 (17)N3—C21—C22121.2 (3)
C16—N2—H2N108.2 (18)N3—C21—H21119.4
C21—N3—C25118.6 (2)C22—C21—H21119.4
C21—N3—Cu1123.14 (19)C23—C22—C21120.0 (3)
C25—N3—Cu1118.18 (17)C23—C22—H22120.0
C28—N4—C27108.84 (19)C21—C22—H22120.0
C28—N4—C26114.45 (19)C22—C23—C24119.3 (3)
C27—N4—C26109.3 (2)C22—C23—H23120.3
C28—N4—H4N107.8 (17)C24—C23—H23120.3
C27—N4—H4N107.2 (18)C25—C24—C23117.4 (2)
C26—N4—H4N109.1 (17)C25—C24—C26117.9 (2)
O2—C1—O1121.6 (2)C23—C24—C26124.5 (2)
O2—C1—C2118.6 (2)N3—C25—C24123.4 (2)
O1—C1—C2119.7 (2)N3—C25—H25118.3
C5—C2—C1112.0 (2)C24—C25—H25118.3
C5—C2—C3110.5 (2)N4—C26—C24114.5 (2)
C1—C2—C3108.9 (2)N4—C26—H26A108.6
C5—C2—C4109.5 (2)C24—C26—H26A108.6
C1—C2—C4107.7 (2)N4—C26—H26B108.6
C3—C2—C4108.1 (2)C24—C26—H26B108.6
O4—C3—O3121.7 (2)H26A—C26—H26B107.6
O4—C3—C2119.4 (2)N4—C27—C28ii111.7 (2)
O3—C3—C2118.9 (2)N4—C27—H27A109.3
C2—C4—H4A109.5C28ii—C27—H27A109.3
C2—C4—H4B109.5N4—C27—H27B109.3
H4A—C4—H4B109.5C28ii—C27—H27B109.3
C2—C4—H4C109.5H27A—C27—H27B107.9
H4A—C4—H4C109.5N4—C28—C27ii109.3 (2)
H4B—C4—H4C109.5N4—C28—H28A109.8
C2—C5—H5A109.5C27ii—C28—H28A109.8
C2—C5—H5B109.5N4—C28—H28B109.8
H5A—C5—H5B109.5C27ii—C28—H28B109.8
C2—C5—H5C109.5H28A—C28—H28B108.3
H5A—C5—H5C109.5
O3—Cu1—O1—C1−25.1 (2)C1—C2—C3—O3−55.3 (3)
N1—Cu1—O1—C1150.0 (2)C4—C2—C3—O361.4 (3)
O6—Cu1—O1—C1−124.6 (2)C15—N1—C11—C12−0.7 (4)
O1—Cu1—O3—C323.3 (2)Cu1—N1—C11—C12177.0 (2)
N3—Cu1—O3—C3−153.4 (2)N1—C11—C12—C13−0.3 (4)
O6—Cu1—O3—C3113.1 (2)C11—C12—C13—C141.5 (4)
O5—Cl1—O6—Cu1−27.77 (19)C12—C13—C14—C15−1.7 (4)
O7—Cl1—O6—Cu1−147.89 (15)C12—C13—C14—C16−177.5 (2)
O8—Cl1—O6—Cu192.71 (17)C11—N1—C15—C140.5 (4)
O3—Cu1—O6—Cl1−15.88 (17)Cu1—N1—C15—C14−177.01 (19)
O1—Cu1—O6—Cl175.56 (16)C13—C14—C15—N10.7 (4)
N1—Cu1—O6—Cl1165.97 (17)C16—C14—C15—N1176.6 (2)
N3—Cu1—O6—Cl1−101.95 (16)C17—N2—C16—C14−68.1 (3)
O1—Cu1—N1—C1145.5 (2)C18—N2—C16—C14169.3 (2)
N3—Cu1—N1—C11−138.1 (2)C15—C14—C16—N2123.4 (3)
O6—Cu1—N1—C11−44.05 (19)C13—C14—C16—N2−60.9 (3)
O1—Cu1—N1—C15−137.0 (2)C18—N2—C17—C18i−58.4 (3)
N3—Cu1—N1—C1539.4 (2)C16—N2—C17—C18i178.3 (2)
O6—Cu1—N1—C15133.5 (2)C17—N2—C18—C17i58.2 (3)
O3—Cu1—N3—C21−103.2 (2)C16—N2—C18—C17i−177.4 (2)
N1—Cu1—N3—C2181.5 (2)C25—N3—C21—C22−1.7 (4)
O6—Cu1—N3—C21−4.0 (2)Cu1—N3—C21—C22174.1 (2)
O3—Cu1—N3—C2572.62 (18)N3—C21—C22—C231.3 (4)
N1—Cu1—N3—C25−102.68 (19)C21—C22—C23—C240.6 (4)
O6—Cu1—N3—C25171.78 (18)C22—C23—C24—C25−2.1 (4)
Cu1—O1—C1—O2173.27 (17)C22—C23—C24—C26−178.9 (3)
Cu1—O1—C1—C2−9.9 (3)C21—N3—C25—C240.0 (4)
O2—C1—C2—C5−7.0 (3)Cu1—N3—C25—C24−175.96 (19)
O1—C1—C2—C5176.1 (2)C23—C24—C25—N31.9 (4)
O2—C1—C2—C3−129.6 (2)C26—C24—C25—N3178.8 (2)
O1—C1—C2—C353.5 (3)C28—N4—C26—C24−56.9 (3)
O2—C1—C2—C4113.4 (3)C27—N4—C26—C24−179.2 (2)
O1—C1—C2—C4−63.5 (3)C25—C24—C26—N4139.4 (2)
Cu1—O3—C3—O4−168.75 (18)C23—C24—C26—N4−43.9 (4)
Cu1—O3—C3—C213.4 (3)C28—N4—C27—C28ii59.3 (3)
C5—C2—C3—O43.3 (3)C26—N4—C27—C28ii−175.1 (2)
C1—C2—C3—O4126.8 (2)C27—N4—C28—C27ii−57.8 (3)
C4—C2—C3—O4−116.5 (3)C26—N4—C28—C27ii179.7 (2)
C5—C2—C3—O3−178.8 (2)

Symmetry codes: (i) −x+2, −y+2, −z; (ii) −x+1, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O120.894 (18)1.98 (2)2.838 (4)160 (4)
O1W—H1WB···O8iii0.875 (18)2.35 (3)3.053 (4)137 (3)
O1W—H1WB···O2iv0.875 (18)2.46 (3)3.120 (3)133 (3)
O2W—H2WA···O70.929 (19)2.14 (2)3.044 (4)164 (4)
O2W—H2WB···O1Wv0.941 (19)1.95 (3)2.807 (5)150 (5)
N2—H2N···O2vi0.887 (17)1.804 (18)2.673 (3)166 (3)
N4—H4N···O4vii0.923 (17)1.727 (17)2.647 (3)175 (3)

Symmetry codes: (iii) −x, −y, −z+1; (iv) −x+1, −y, −z+1; (v) x+1, y, z−1; (vi) −x+2, −y+1, −z; (vii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2730).

References

  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Johnston, L. L., Martin, D. P. & LaDuca, R. L. (2008). Inorg. Chim. Acta, 361, 2887–2894.
  • Palmer, D. (2007). Crystal Maker Crystal Maker, Bicester, Oxfordshire, England.
  • Pocic, D., Planeix, J.-M., Kyritsakas, N., Jouaiti, A., Abdelaziz, H. & Wais, M. (2005). CrystEngComm, 7, 624–628.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography