PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1597.
Published online 2008 November 22. doi:  10.1107/S1600536808037860
PMCID: PMC2959818

{N,N′-Bis[(E)-3-phenyl­allyl­idene]ethane-1,2-diamine}dichloridozinc(II)

Abstract

In the title compound, [ZnCl2(C20H20N2)], the ZnII atom is four coordinated in a distorted tetra­hedral geometry by two N atoms of the Schiff base ligand and by two Cl atoms. Edge-to-face C—H(...)π inter­actions exist between mol­ecules, with a dihedral angle of 37.8 (1)° between the benzene ring planes and a shortest H(...)centroid distance of 3.62 (5) Å.

Related literature

For related literature on transition metal complexes of Schiff base ligands, see: Bhatia et al. (1981 [triangle]); Costamagna et al. (1992 [triangle]). For related complexes of ZnCl2 with bidentate ligands, see: Tolman et al. (1991 [triangle]); Wang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1597-scheme1.jpg

Experimental

Crystal data

  • [ZnCl2(C20H20N2)]
  • M r = 424.65
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1597-efi1.jpg
  • a = 7.2140 (8) Å
  • b = 20.265 (2) Å
  • c = 14.0906 (16) Å
  • β = 94.913 (2)°
  • V = 2052.4 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.46 mm−1
  • T = 300 (2) K
  • 0.23 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.730, T max = 0.868
  • 15814 measured reflections
  • 4458 independent reflections
  • 3027 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.132
  • S = 0.99
  • 4458 reflections
  • 226 parameters
  • H-atom parameters constrained
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808037860/bi2311sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037860/bi2311Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Zhi-Dong Lin for assistance with the data.

supplementary crystallographic information

Comment

Transition-metal compounds containing Schiff-base ligands play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism and molecular architectures (Costamagna et al., 1992; Bhatia et al., 1981). In the title compound (Fig. 1), the ZnII atom is coordinated by a bidentate Schiff-base ligand and two Cl atoms in a slightly distorted tetrahedral geometry. The Zn—Cl bond distances are comparable to those observed in the related compounds [ZnCl2(C12H16BrClN2O)] (Wang et al., 2007) and [ZnCl2(C16H18N4O)] (Tolman et al., 1991).

Experimental

Cinnamaldehyde (0.2 mmol, 26.4 mg), ZnCl2.6H2O (0.1 mmol, 24 mg) and ethylenediamine (0.1 mmol, 6.4 mg) were dissolved in methanol (10 ml). The mixture was stirred for 30 min at room temperature to give a clear yellow solution, which was left in air for a few days to give yellow crystals of the title compound (yield 79%). Elemental analysis calculated: C 56.56, H 4.75, N 6.60%; found: C 56.79, H 4.49, N 6.31%.

Refinement

H atoms were positioned geometrically, with C—H = 0.93 or 0.97 Å for aromatic and ethyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Molecular structure with displacement ellipsoids drawn at 50% probability for non-H atoms.
Fig. 2.
Packing diagram viewed along the a axis.

Crystal data

[ZnCl2(C20H20N2)]F000 = 872
Mr = 424.65Dx = 1.374 Mg m3
Monoclinic, P21/cMelting point: 553 K
Hall symbol: -P 2ybcMo Kα radiation λ = 0.71073 Å
a = 7.2140 (8) ÅCell parameters from 2760 reflections
b = 20.265 (2) Åθ = 2.1–28.1º
c = 14.0906 (16) ŵ = 1.46 mm1
β = 94.913 (2)ºT = 300 (2) K
V = 2052.4 (4) Å3Block, yellow
Z = 40.23 × 0.20 × 0.10 mm

Data collection

Bruker SMART CCD diffractometer4458 independent reflections
Radiation source: fine-focus sealed tube3027 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.030
T = 300(2) Kθmax = 27.0º
[var phi] and ω scansθmin = 1.8º
Absorption correction: multi-scanSADABS (Sheldrick, 1996)h = −9→9
Tmin = 0.730, Tmax = 0.868k = −25→24
15814 measured reflectionsl = −17→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.132  w = 1/[σ2(Fo2) + (0.0805P)2] where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
4458 reflectionsΔρmax = 0.50 e Å3
226 parametersΔρmin = −0.29 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.09704 (4)0.575283 (15)0.83248 (3)0.06115 (16)
C10.2380 (5)0.84830 (15)0.8767 (2)0.0731 (8)
C20.2309 (7)0.91286 (17)0.9108 (3)0.0965 (13)
H20.12600.92740.93870.116*
C30.3789 (9)0.9553 (2)0.9034 (4)0.1214 (18)
H30.37360.99820.92640.146*
C40.5311 (10)0.9345 (3)0.8629 (4)0.1234 (19)
H40.63030.96330.85850.148*
C50.5423 (6)0.8711 (2)0.8278 (3)0.1013 (12)
H50.64820.85740.80000.122*
C60.3962 (5)0.82863 (17)0.8343 (2)0.0822 (9)
H60.40290.78610.81000.099*
C70.0772 (4)0.80522 (15)0.8855 (2)0.0706 (8)
H7−0.02860.82500.90600.085*
C80.0665 (4)0.74079 (14)0.8672 (2)0.0674 (8)
H80.17050.71950.84710.081*
C9−0.0972 (4)0.70302 (14)0.8772 (2)0.0637 (7)
H9−0.20260.72480.89470.076*
C10−0.2802 (4)0.60569 (14)0.8766 (2)0.0694 (8)
H10A−0.38570.63480.86260.083*
H10B−0.28030.59120.94220.083*
C11−0.2957 (4)0.54701 (14)0.8112 (2)0.0673 (8)
H11A−0.39800.51900.82670.081*
H11B−0.31940.56150.74570.081*
C12−0.1214 (4)0.44778 (15)0.8336 (2)0.0630 (7)
H12−0.23640.42680.83000.076*
C130.0416 (4)0.40785 (14)0.8503 (2)0.0624 (7)
H130.15780.42800.85370.075*
C140.0320 (4)0.34316 (14)0.8611 (2)0.0661 (7)
H14−0.08740.32550.85440.079*
C150.1802 (5)0.29590 (14)0.8818 (2)0.0685 (8)
C160.1377 (6)0.22894 (16)0.8800 (2)0.0884 (10)
H160.01540.21520.86600.106*
C170.2773 (10)0.1826 (2)0.8991 (3)0.1219 (18)
H170.24770.13800.89770.146*
C180.4567 (9)0.2015 (3)0.9198 (3)0.131 (2)
H180.54960.17000.93070.158*
C190.5004 (6)0.2675 (3)0.9245 (3)0.1094 (14)
H190.62280.28030.94050.131*
C200.3652 (5)0.31469 (18)0.9059 (2)0.0784 (9)
H200.39670.35920.90930.094*
Cl10.20858 (16)0.59354 (5)0.69366 (8)0.1081 (4)
Cl20.30022 (11)0.55861 (5)0.95630 (7)0.0897 (3)
N1−0.1064 (3)0.64122 (11)0.86341 (17)0.0614 (6)
N2−0.1194 (3)0.51002 (10)0.82321 (16)0.0593 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0504 (2)0.0597 (2)0.0751 (3)0.00295 (13)0.01574 (16)0.00885 (15)
C10.096 (2)0.0645 (18)0.0562 (18)−0.0083 (16)−0.0095 (16)0.0046 (14)
C20.141 (4)0.070 (2)0.074 (3)−0.011 (2)−0.012 (2)−0.0016 (17)
C30.186 (6)0.079 (3)0.091 (3)−0.042 (3)−0.033 (3)0.002 (2)
C40.158 (5)0.115 (4)0.088 (3)−0.066 (3)−0.040 (3)0.030 (3)
C50.104 (3)0.116 (3)0.081 (3)−0.037 (2)−0.015 (2)0.021 (2)
C60.088 (2)0.084 (2)0.073 (2)−0.0153 (19)−0.0024 (18)0.0062 (18)
C70.079 (2)0.0661 (18)0.066 (2)0.0042 (15)0.0032 (15)−0.0019 (15)
C80.0682 (18)0.0607 (18)0.074 (2)0.0033 (13)0.0079 (15)0.0016 (15)
C90.0599 (17)0.0656 (18)0.066 (2)0.0055 (13)0.0109 (14)0.0036 (14)
C100.0510 (16)0.0672 (17)0.093 (2)−0.0010 (13)0.0202 (15)−0.0057 (16)
C110.0497 (15)0.0717 (18)0.080 (2)0.0018 (13)0.0009 (14)0.0018 (16)
C120.0601 (17)0.0664 (17)0.0626 (19)−0.0061 (13)0.0053 (14)−0.0033 (14)
C130.0569 (16)0.0596 (16)0.070 (2)−0.0013 (12)0.0027 (14)−0.0044 (14)
C140.0681 (18)0.0637 (18)0.0661 (19)−0.0057 (14)0.0036 (14)−0.0026 (14)
C150.089 (2)0.0611 (18)0.0550 (18)0.0098 (15)0.0066 (16)−0.0031 (14)
C160.132 (3)0.067 (2)0.064 (2)0.006 (2)−0.010 (2)−0.0051 (16)
C170.213 (6)0.073 (2)0.075 (3)0.047 (3)−0.016 (3)−0.0095 (19)
C180.164 (5)0.140 (4)0.088 (3)0.091 (4)−0.003 (3)−0.008 (3)
C190.093 (3)0.159 (4)0.076 (3)0.046 (3)0.006 (2)0.003 (3)
C200.075 (2)0.091 (2)0.070 (2)0.0096 (18)0.0065 (16)0.0062 (17)
Cl10.1177 (8)0.1124 (7)0.1025 (8)0.0353 (6)0.0584 (6)0.0377 (6)
Cl20.0556 (5)0.1233 (7)0.0894 (6)−0.0061 (4)0.0012 (4)0.0130 (5)
N10.0555 (13)0.0600 (14)0.0702 (16)0.0012 (10)0.0137 (11)0.0006 (11)
N20.0549 (13)0.0592 (14)0.0641 (15)0.0023 (10)0.0068 (11)0.0023 (11)

Geometric parameters (Å, °)

Zn1—N22.042 (2)C10—H10A0.970
Zn1—N12.059 (2)C10—H10B0.970
Zn1—Cl22.2064 (10)C11—N21.473 (3)
Zn1—Cl12.2092 (10)C11—H11A0.970
C1—C61.391 (4)C11—H11B0.970
C1—C21.396 (5)C12—N21.270 (3)
C1—C71.465 (4)C12—C131.431 (4)
C2—C31.382 (6)C12—H120.930
C2—H20.930C13—C141.322 (4)
C3—C41.348 (7)C13—H130.930
C3—H30.930C14—C151.447 (4)
C4—C51.381 (7)C14—H140.930
C4—H40.930C15—C161.391 (4)
C5—C61.370 (5)C15—C201.402 (4)
C5—H50.930C16—C171.386 (6)
C6—H60.930C16—H160.930
C7—C81.332 (4)C17—C181.357 (7)
C7—H70.930C17—H170.930
C8—C91.424 (4)C18—C191.373 (7)
C8—H80.930C18—H180.930
C9—N11.268 (3)C19—C201.375 (5)
C9—H90.930C19—H190.930
C10—N11.471 (3)C20—H200.930
C10—C111.503 (4)
N2—Zn1—N183.04 (9)N2—C11—C10108.3 (2)
N2—Zn1—Cl2113.83 (7)N2—C11—H11A110.0
N1—Zn1—Cl2111.68 (7)C10—C11—H11A110.0
N2—Zn1—Cl1112.73 (8)N2—C11—H11B110.0
N1—Zn1—Cl1113.52 (7)C10—C11—H11B110.0
Cl2—Zn1—Cl1117.26 (4)H11A—C11—H11B108.4
C6—C1—C2118.2 (4)N2—C12—C13124.3 (3)
C6—C1—C7123.4 (3)N2—C12—H12117.8
C2—C1—C7118.5 (4)C13—C12—H12117.8
C3—C2—C1120.4 (5)C14—C13—C12121.9 (3)
C3—C2—H2119.8C14—C13—H13119.0
C1—C2—H2119.8C12—C13—H13119.0
C4—C3—C2120.0 (5)C13—C14—C15129.4 (3)
C4—C3—H3120.0C13—C14—H14115.3
C2—C3—H3120.0C15—C14—H14115.3
C3—C4—C5121.2 (5)C16—C15—C20118.2 (3)
C3—C4—H4119.4C16—C15—C14119.0 (3)
C5—C4—H4119.4C20—C15—C14122.8 (3)
C6—C5—C4119.4 (5)C17—C16—C15120.1 (4)
C6—C5—H5120.3C17—C16—H16119.9
C4—C5—H5120.3C15—C16—H16119.9
C5—C6—C1120.9 (4)C18—C17—C16121.0 (4)
C5—C6—H6119.6C18—C17—H17119.5
C1—C6—H6119.6C16—C17—H17119.5
C8—C7—C1126.9 (3)C17—C18—C19119.7 (4)
C8—C7—H7116.5C17—C18—H18120.1
C1—C7—H7116.5C19—C18—H18120.1
C7—C8—C9122.9 (3)C18—C19—C20120.8 (4)
C7—C8—H8118.6C18—C19—H19119.6
C9—C8—H8118.6C20—C19—H19119.6
N1—C9—C8123.3 (3)C19—C20—C15120.1 (4)
N1—C9—H9118.4C19—C20—H20119.9
C8—C9—H9118.4C15—C20—H20119.9
N1—C10—C11109.2 (2)C9—N1—C10119.9 (2)
N1—C10—H10A109.8C9—N1—Zn1130.1 (2)
C11—C10—H10A109.8C10—N1—Zn1109.86 (16)
N1—C10—H10B109.8C12—N2—C11120.0 (2)
C11—C10—H10B109.8C12—N2—Zn1130.7 (2)
H10A—C10—H10B108.3C11—N2—Zn1109.00 (16)
C6—C1—C2—C3−0.9 (5)C16—C15—C20—C191.8 (5)
C7—C1—C2—C3−179.6 (3)C14—C15—C20—C19−179.8 (3)
C1—C2—C3—C40.2 (7)C8—C9—N1—C10179.1 (3)
C2—C3—C4—C50.3 (7)C8—C9—N1—Zn14.1 (4)
C3—C4—C5—C60.0 (7)C11—C10—N1—C9150.3 (3)
C4—C5—C6—C1−0.8 (5)C11—C10—N1—Zn1−33.8 (3)
C2—C1—C6—C51.2 (5)N2—Zn1—N1—C9−176.0 (3)
C7—C1—C6—C5179.8 (3)Cl2—Zn1—N1—C971.1 (3)
C6—C1—C7—C89.5 (5)Cl1—Zn1—N1—C9−64.2 (3)
C2—C1—C7—C8−171.8 (3)N2—Zn1—N1—C108.69 (19)
C1—C7—C8—C9−179.4 (3)Cl2—Zn1—N1—C10−104.23 (19)
C7—C8—C9—N1−177.3 (3)Cl1—Zn1—N1—C10120.48 (19)
N1—C10—C11—N250.0 (3)C13—C12—N2—C11−176.8 (3)
N2—C12—C13—C14179.6 (3)C13—C12—N2—Zn1−3.6 (4)
C12—C13—C14—C15−177.5 (3)C10—C11—N2—C12132.9 (3)
C13—C14—C15—C16−173.3 (3)C10—C11—N2—Zn1−41.7 (3)
C13—C14—C15—C208.3 (5)N1—Zn1—N2—C12−155.4 (3)
C20—C15—C16—C17−1.8 (5)Cl2—Zn1—N2—C12−44.7 (3)
C14—C15—C16—C17179.7 (3)Cl1—Zn1—N2—C1292.0 (3)
C15—C16—C17—C180.1 (6)N1—Zn1—N2—C1118.43 (19)
C16—C17—C18—C191.8 (7)Cl2—Zn1—N2—C11129.09 (17)
C17—C18—C19—C20−1.9 (7)Cl1—Zn1—N2—C11−94.19 (18)
C18—C19—C20—C150.0 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2311).

References

  • Bhatia, S. C., Bindlish, J. M., Saini, A. R. & Jain, P. C. (1981). J. Chem. Soc. Dalton Trans. pp. 1773–1779.
  • Costamagna, J., Vargas, J., Latorre, R., Alvarado, A. & Mena, G. (1992). Coord. Chem. Rev.119, 67–88.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Tolman, W. B., Liu, S., Bentsen, J. G. & Lippard, S. J. (1991). J. Am. Chem. Soc 113, 152–164.
  • Wang, F.-W., Wei, Y.-J. & Zhu, Q.-Y. (2007). Acta Cryst. E63, m1084–m1085.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography