PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1561.
Published online 2008 November 20. doi:  10.1107/S1600536808035927
PMCID: PMC2959816

Bis(tetra­phenyl­phospho­nium) di-μ-iodido-bis[di­iodido­tellurate(II)]

Abstract

The structure of the title compound, (C24H20P)2[Te2I6], is composed of discrete PPh4 + cations and centrosymmetric [Te2I6]2− anions. The tellurium(II) atom shows a sligthly distorted square-planar TeI4 geometry and is coordinated to two bridging and two terminal iodine atoms. The planar [Te2I6]2− ions are isolated by the cations and no inter­molecular tellurium–halogen or halogen–halogen inter­actions are present.

Related literature

For a review of halidotellurate anions, see Krebs & Ahlers (1990 [triangle]). For the structure of the [Te2I6]2− anion, see: Konu & Chivers (2006 [triangle]); Fujiwara et al. (2002 [triangle]). For related materials, see: Janickis et al. (2002 [triangle], 2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1561-scheme1.jpg

Experimental

Crystal data

  • (C24H20P)2[Te2I6]
  • M r = 1695.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1561-efi1.jpg
  • a = 13.252 (3) Å
  • b = 14.494 (3) Å
  • c = 14.109 (3) Å
  • β = 107.48 (3)°
  • V = 2584.8 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 4.80 mm−1
  • T = 100 (2) K
  • 0.15 × 0.15 × 0.10 mm

Data collection

  • Bruker–Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.511, T max = 0.619
  • 23569 measured reflections
  • 5009 independent reflections
  • 4225 reflections with I > 2σ(I)
  • R int = 0.103

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.107
  • S = 1.02
  • 5009 reflections
  • 263 parameters
  • H-atom parameters constrained
  • Δρmax = 1.08 e Å−3
  • Δρmin = −1.03 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Berndt, 2008 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808035927/hb2834sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035927/hb2834Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Academy of Finland is gratefully acknowledged.

supplementary crystallographic information

Comment

The asymmetric unit of the title compound, (I), [PPh4]2[Te2I6], consists of one tetraphenylphosphonium cation and half of the anion (Fig. 1). The tellurium atoms show a distorted square planar coordination geometry and are coordinated to two bridging and two terminal iodine atoms (Table 1). The terminal Te—I bond lengths of 2.8103 (8) Å and 2.8590 (8) Å as well as the bridging Te—I bond lengths of 3.0676 (8) Å and 3.2244 (8) Å can be compared to the corresponding Te—I bonds in [(Et3PO)2H]2[Te2I6] (Konu & Chivers, 2006) and (C10H8S8)2[Te2I6].3(C10H8S8) (Fujiwara et al. 2002). In [(Et3PO)2H]2[Te2I6] and (C10H8S8)2[Te2I6].3(C10H8S8) the anions are involved in interionic I···I interactions shorter than the van der Waals radii of two iodine atoms, whereas in the present compound intermolecular iodine-iodine contacts are absent. The planar [Te2I6]2- ions are isolated by the cations as shown in Fig. 2.

The present salt was obtained from the reaction mixture of PPh4Cl, KI, Te, TeI4, and I2 in acetonitrile. Corresponding reactions with selenium, tellurium and bromine containing starting materials have yielded interesting mixed-valence bromidotellurate(IV)-selenate(II) and -selenate(I) anions [for illustrative examples, see Janickis et al. (2002, 2003)].

Experimental

The mixture of PPh4Cl (0.3750 g, 1.00 mmol), KI (0.2 g, 1 mmol), Te (0.1452 g, 1.14 mmol), TeI4 (0.3172 g, 0.50 mmol), and I2 (0.1274 g, 0.50 mmol) in 15 ml acetonitrile gave a grey precipitate and a dark red solution after refluxing 2 h. A mixture of crystals of (I) and PPh4I3 was isolated from the filtrate after subsequent concentration of the solution.

Refinement

The H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) showing displacement ellipsoids drawn at 50% probability (arbitrary spheres for the H atoms). The unlabelled atoms are generated by the symmetry operation (1–x, 1–y, 1–z).
Fig. 2.
Space filling representations of the packing of the molecules.

Crystal data

(C24H20P)2[Te2I6]F000 = 1560
Mr = 1695.34Dx = 2.178 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4225 reflections
a = 13.252 (3) Åθ = 3.0–26.0º
b = 14.494 (3) ŵ = 4.81 mm1
c = 14.109 (3) ÅT = 100 (2) K
β = 107.48 (3)ºPlate, brown
V = 2584.8 (9) Å30.15 × 0.15 × 0.10 mm
Z = 2

Data collection

Bruker Nonius KappaCCD diffractometer5009 independent reflections
Radiation source: fine-focus sealed tube4225 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.103
T = 100(2) Kθmax = 26.0º
[var phi] scans, and ω scans with κ offsetsθmin = 3.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −16→16
Tmin = 0.511, Tmax = 0.619k = −17→17
23569 measured reflectionsl = −17→16

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041  w = 1/[σ2(Fo2) + (0.0555P)2 + 5.4856P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.107(Δ/σ)max = 0.001
S = 1.03Δρmax = 1.09 e Å3
5009 reflectionsΔρmin = −1.03 e Å3
263 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00320 (19)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Te10.39145 (3)0.49167 (2)0.59757 (3)0.02321 (13)
I10.18308 (3)0.56474 (3)0.56278 (3)0.02848 (14)
I20.39684 (3)0.41640 (3)0.78259 (3)0.03878 (15)
I30.61278 (3)0.41817 (3)0.61252 (3)0.02757 (13)
P10.32106 (11)0.11106 (9)0.54406 (10)0.0195 (3)
C110.2712 (4)−0.0042 (4)0.5160 (4)0.0229 (12)
C120.3382 (5)−0.0802 (4)0.5366 (5)0.0270 (13)
H120.4121−0.07180.56610.032*
C130.2973 (5)−0.1679 (4)0.5144 (4)0.0316 (13)
H130.3432−0.21980.52950.038*
C140.1894 (5)−0.1807 (4)0.4700 (4)0.0330 (14)
H140.1613−0.24110.45550.040*
C150.1229 (5)−0.1046 (4)0.4470 (5)0.0304 (13)
H150.0496−0.11330.41460.036*
C160.1620 (5)−0.0163 (4)0.4706 (4)0.0268 (12)
H160.11570.03530.45640.032*
C210.4391 (4)0.1058 (4)0.6475 (4)0.0216 (11)
C220.5306 (4)0.1552 (4)0.6471 (4)0.0268 (12)
H220.53060.19160.59110.032*
C230.6208 (5)0.1507 (4)0.7286 (5)0.0323 (14)
H230.68250.18410.72850.039*
C240.6208 (5)0.0973 (4)0.8100 (4)0.0305 (13)
H240.68290.09340.86520.037*
C250.5306 (5)0.0497 (4)0.8112 (4)0.0263 (12)
H250.53070.01440.86800.032*
C260.4407 (4)0.0530 (4)0.7304 (4)0.0223 (11)
H260.37960.01910.73140.027*
C310.3505 (4)0.1619 (4)0.4396 (4)0.0208 (11)
C320.3740 (4)0.2572 (4)0.4442 (4)0.0233 (11)
H320.37010.29260.49960.028*
C330.4029 (4)0.2990 (4)0.3680 (4)0.0268 (12)
H330.41930.36300.37110.032*
C340.4077 (4)0.2469 (4)0.2870 (4)0.0266 (12)
H340.42880.27520.23530.032*
C350.3818 (4)0.1534 (4)0.2808 (4)0.0267 (12)
H350.38340.11900.22400.032*
C360.3537 (4)0.1101 (4)0.3574 (4)0.0247 (12)
H360.33700.04620.35360.030*
C410.2233 (4)0.1829 (4)0.5724 (4)0.0221 (11)
C420.2246 (5)0.1973 (4)0.6707 (4)0.0301 (13)
H420.27660.16800.72350.036*
C430.1496 (5)0.2545 (4)0.6908 (5)0.0357 (15)
H430.15110.26520.75770.043*
C440.0728 (5)0.2959 (4)0.6140 (5)0.0314 (14)
H440.02190.33530.62810.038*
C450.0702 (5)0.2800 (4)0.5171 (5)0.0342 (14)
H450.01640.30780.46450.041*
C460.1445 (5)0.2242 (4)0.4954 (5)0.0296 (13)
H460.14210.21390.42820.036*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Te10.0210 (2)0.0221 (2)0.0260 (2)−0.00164 (14)0.00639 (16)−0.00285 (14)
I10.0232 (2)0.0348 (2)0.0277 (2)0.00469 (15)0.00807 (16)−0.00166 (15)
I20.0337 (3)0.0505 (3)0.0295 (3)−0.00871 (18)0.00551 (19)0.00788 (18)
I30.0228 (2)0.0278 (2)0.0317 (2)0.00296 (14)0.00762 (17)0.00327 (15)
P10.0181 (7)0.0196 (7)0.0205 (7)0.0006 (5)0.0053 (5)−0.0005 (5)
C110.026 (3)0.027 (3)0.018 (3)−0.002 (2)0.010 (2)0.002 (2)
C120.020 (3)0.029 (3)0.032 (3)0.002 (2)0.008 (3)−0.003 (2)
C130.033 (3)0.033 (3)0.028 (3)0.007 (3)0.008 (3)0.004 (3)
C140.044 (4)0.025 (3)0.029 (3)−0.009 (3)0.010 (3)0.000 (3)
C150.026 (3)0.031 (3)0.030 (3)−0.004 (2)0.003 (2)−0.004 (3)
C160.026 (3)0.022 (3)0.029 (3)−0.002 (2)0.004 (2)−0.002 (2)
C210.018 (3)0.020 (3)0.026 (3)0.001 (2)0.004 (2)−0.003 (2)
C220.027 (3)0.024 (3)0.031 (3)0.006 (2)0.011 (2)0.003 (2)
C230.024 (3)0.035 (3)0.036 (3)−0.006 (2)0.005 (3)0.001 (3)
C240.026 (3)0.035 (3)0.024 (3)0.007 (2)−0.003 (2)−0.003 (2)
C250.026 (3)0.027 (3)0.024 (3)0.006 (2)0.005 (2)−0.002 (2)
C260.022 (3)0.024 (3)0.021 (3)0.004 (2)0.007 (2)−0.003 (2)
C310.018 (3)0.023 (3)0.019 (3)0.001 (2)0.002 (2)0.002 (2)
C320.024 (3)0.022 (3)0.023 (3)−0.001 (2)0.007 (2)−0.004 (2)
C330.024 (3)0.024 (3)0.032 (3)0.002 (2)0.008 (2)0.005 (2)
C340.021 (3)0.035 (3)0.026 (3)0.004 (2)0.009 (2)0.011 (2)
C350.029 (3)0.027 (3)0.025 (3)0.005 (2)0.008 (2)−0.002 (2)
C360.023 (3)0.020 (3)0.029 (3)0.000 (2)0.005 (2)−0.002 (2)
C410.015 (3)0.023 (3)0.028 (3)−0.001 (2)0.007 (2)0.001 (2)
C420.023 (3)0.046 (4)0.021 (3)0.006 (3)0.006 (2)−0.002 (3)
C430.030 (3)0.037 (4)0.043 (4)0.000 (3)0.016 (3)−0.009 (3)
C440.026 (3)0.028 (3)0.046 (4)0.001 (2)0.020 (3)−0.003 (3)
C450.036 (3)0.030 (3)0.046 (4)0.013 (3)0.024 (3)0.016 (3)
C460.026 (3)0.037 (3)0.029 (3)0.000 (2)0.013 (3)0.004 (3)

Geometric parameters (Å, °)

Te1—I22.8103 (8)C24—H240.9500
Te1—I12.8590 (8)C25—C261.380 (8)
Te1—I33.0676 (8)C25—H250.9500
Te1—I3i3.2244 (8)C26—H260.9500
I3—Te1i3.2244 (8)C31—C361.393 (8)
P1—C311.792 (6)C31—C321.414 (7)
P1—C211.793 (6)C32—C331.385 (8)
P1—C111.796 (6)C32—H320.9500
P1—C411.799 (5)C33—C341.386 (8)
C11—C121.389 (8)C33—H330.9500
C11—C161.407 (8)C34—C351.395 (8)
C12—C131.381 (8)C34—H340.9500
C12—H120.9500C35—C361.394 (8)
C13—C141.391 (9)C35—H350.9500
C13—H130.9500C36—H360.9500
C14—C151.387 (9)C41—C461.396 (8)
C14—H140.9500C41—C421.397 (8)
C15—C161.383 (8)C42—C431.387 (8)
C15—H150.9500C42—H420.9500
C16—H160.9500C43—C441.381 (9)
C21—C261.393 (8)C43—H430.9500
C21—C221.410 (8)C44—C451.377 (9)
C22—C231.390 (8)C44—H440.9500
C22—H220.9500C45—C461.378 (8)
C23—C241.383 (9)C45—H450.9500
C23—H230.9500C46—H460.9500
C24—C251.385 (9)
I2—Te1—I193.27 (3)C26—C25—C24120.5 (6)
I2—Te1—I392.54 (3)C26—C25—H25119.8
I1—Te1—I3174.091 (17)C24—C25—H25119.8
I2—Te1—I3i178.851 (17)C25—C26—C21120.2 (5)
I1—Te1—I3i86.73 (3)C25—C26—H26119.9
I3—Te1—I3i87.49 (3)C21—C26—H26119.9
Te1—I3—Te1i92.51 (3)C36—C31—C32120.2 (5)
C31—P1—C21109.5 (3)C36—C31—P1122.1 (4)
C31—P1—C11110.9 (2)C32—C31—P1117.6 (4)
C21—P1—C11108.2 (3)C33—C32—C31120.0 (5)
C31—P1—C41107.1 (3)C33—C32—H32120.0
C21—P1—C41110.8 (3)C31—C32—H32120.0
C11—P1—C41110.2 (3)C32—C33—C34119.6 (5)
C12—C11—C16120.1 (5)C32—C33—H33120.2
C12—C11—P1121.5 (4)C34—C33—H33120.2
C16—C11—P1118.5 (4)C33—C34—C35120.6 (5)
C13—C12—C11120.1 (6)C33—C34—H34119.7
C13—C12—H12120.0C35—C34—H34119.7
C11—C12—H12120.0C36—C35—C34120.5 (5)
C12—C13—C14120.3 (6)C36—C35—H35119.8
C12—C13—H13119.9C34—C35—H35119.8
C14—C13—H13119.9C31—C36—C35119.0 (5)
C15—C14—C13119.7 (6)C31—C36—H36120.5
C15—C14—H14120.2C35—C36—H36120.5
C13—C14—H14120.2C46—C41—C42119.5 (5)
C16—C15—C14120.9 (6)C46—C41—P1119.7 (4)
C16—C15—H15119.6C42—C41—P1120.8 (4)
C14—C15—H15119.6C43—C42—C41119.7 (6)
C15—C16—C11119.0 (5)C43—C42—H42120.1
C15—C16—H16120.5C41—C42—H42120.1
C11—C16—H16120.5C44—C43—C42120.2 (6)
C26—C21—C22119.2 (5)C44—C43—H43119.9
C26—C21—P1119.7 (4)C42—C43—H43119.9
C22—C21—P1121.1 (4)C45—C44—C43120.0 (6)
C23—C22—C21119.9 (5)C45—C44—H44120.0
C23—C22—H22120.0C43—C44—H44120.0
C21—C22—H22120.0C44—C45—C46120.8 (6)
C24—C23—C22119.9 (6)C44—C45—H45119.6
C24—C23—H23120.1C46—C45—H45119.6
C22—C23—H23120.1C45—C46—C41119.7 (6)
C23—C24—C25120.3 (5)C45—C46—H46120.1
C23—C24—H24119.9C41—C46—H46120.1
C25—C24—H24119.9
I2—Te1—I3—Te1i−178.850 (17)P1—C21—C26—C25−178.9 (4)
I3i—Te1—I3—Te1i0.0C21—P1—C31—C36107.5 (5)
C31—P1—C11—C1292.1 (5)C11—P1—C31—C36−12.0 (5)
C21—P1—C11—C12−28.1 (6)C41—P1—C31—C36−132.3 (4)
C41—P1—C11—C12−149.4 (5)C21—P1—C31—C32−70.6 (5)
C31—P1—C11—C16−86.9 (5)C11—P1—C31—C32169.9 (4)
C21—P1—C11—C16152.9 (4)C41—P1—C31—C3249.6 (5)
C41—P1—C11—C1631.6 (5)C36—C31—C32—C33−1.6 (8)
C16—C11—C12—C13−1.2 (9)P1—C31—C32—C33176.6 (4)
P1—C11—C12—C13179.8 (5)C31—C32—C33—C340.5 (8)
C11—C12—C13—C140.9 (9)C32—C33—C34—C351.2 (8)
C12—C13—C14—C150.7 (9)C33—C34—C35—C36−1.9 (8)
C13—C14—C15—C16−2.1 (9)C32—C31—C36—C350.9 (8)
C14—C15—C16—C111.8 (9)P1—C31—C36—C35−177.1 (4)
C12—C11—C16—C15−0.2 (9)C34—C35—C36—C310.8 (8)
P1—C11—C16—C15178.9 (5)C31—P1—C41—C4636.7 (5)
C31—P1—C21—C26−167.4 (4)C21—P1—C41—C46156.1 (4)
C11—P1—C21—C26−46.3 (5)C11—P1—C41—C46−84.1 (5)
C41—P1—C21—C2674.7 (5)C31—P1—C41—C42−143.9 (5)
C31—P1—C21—C2213.4 (5)C21—P1—C41—C42−24.5 (5)
C11—P1—C21—C22134.5 (4)C11—P1—C41—C4295.3 (5)
C41—P1—C21—C22−104.6 (5)C46—C41—C42—C43−1.9 (9)
C26—C21—C22—C230.2 (8)P1—C41—C42—C43178.7 (5)
P1—C21—C22—C23179.4 (5)C41—C42—C43—C441.1 (9)
C21—C22—C23—C240.2 (9)C42—C43—C44—C450.4 (9)
C22—C23—C24—C25−1.1 (9)C43—C44—C45—C46−1.1 (9)
C23—C24—C25—C261.6 (9)C44—C45—C46—C410.3 (9)
C24—C25—C26—C21−1.2 (8)C42—C41—C46—C451.2 (9)
C22—C21—C26—C250.3 (8)P1—C41—C46—C45−179.4 (5)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2834).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Brandenburg, K. & Berndt, M. (2008). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Fujiwara, M., Tajima, N., Imakubo, T., Tamura, M. & Kato, R. (2002). J. Solid State Chem.168, 396–407.
  • Janickis, V., Herberhold, M. & Milius, W. (2003). Z. Anorg. Allg. Chem.629, 29–34.
  • Janickis, V., Nečas, M., Novosad, J., Dušek, M. & Petříček, V. (2002). Acta Cryst. B58, 977–985. [PubMed]
  • Konu, J. & Chivers, T. (2006). Dalton Trans. pp. 3941–3946. [PubMed]
  • Krebs, B. & Ahlers, F. P. (1990). Adv. Inorg. Chem.35, 235–317.
  • Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography