PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2342.
Published online 2008 November 13. doi:  10.1107/S1600536808037070
PMCID: PMC2959807

4-[(4-Amino-3-pyrid­yl)imino­meth­yl]benzonitrile

Abstract

The asymmetric unit of the potential mono-Schiff base ligand title compound, C13H10N4, contains two crystallographically independent mol­ecules, A and B. In mol­ecule A, the two rings are twisted from each other by 13.90 (18)°. By contrast, the dihedral angle between the two rings in mol­ecule B is 0.67 (19)°. In the crystal structure, mol­ecules are linked through inter­molecular N—H(...)N inter­actions via R44(32) motifs, forming two-dimensional arrays. The short distances between the centroids of the six-membered rings indicate the existence of π–π inter­actions [centroid–centroid distances = 3.6880 (17)–3.7466 (15) Å].

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For related structures, see: Li et al. (2005 [triangle]); Bomfim et al. (2005 [triangle]); Glidewell et al. (2005 [triangle], 2006 [triangle]); Sun et al. (2004 [triangle]); Fun et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2342-scheme1.jpg

Experimental

Crystal data

  • C13H10N4
  • M r = 222.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2342-efi1.jpg
  • a = 13.5560 (8) Å
  • b = 12.3000 (7) Å
  • c = 15.7514 (8) Å
  • β = 124.651 (2)°
  • V = 2160.5 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 100.0 (1) K
  • 0.45 × 0.09 × 0.07 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.962, T max = 0.994
  • 18251 measured reflections
  • 3810 independent reflections
  • 2372 reflections with I > 2σ(I)
  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.074
  • wR(F 2) = 0.219
  • S = 1.03
  • 3810 reflections
  • 323 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.63 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SIR2004 (Burla et al., 2003 [triangle]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037070/tk2327sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037070/tk2327Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK thanks PNU for financial support.

supplementary crystallographic information

Comment

Schiff bases are one of most prevalent mixed-donor ligands in the field of coordination chemistry and play an important role in the development of coordination chemistry (Fun et al., 2008). Structures of Schiff bases derived from substituted benzaldehydes have been reported previously (Li et al., 2005; Bomfim et al., 2005; Glidewell et al., 2005, 2006; Sun et al., 2004; Fun et al., 2008).

Each imino (C ═N) functional group is co-planar with the adjacent benzene ring in (I), Fig. 1. Two independent molecules, A and B, comprise the crystallographic asymmetric unit. In molecule A, the two phenyl rings are twisted from each other by 13.90 (18)°. The dihedral angle between the two phenyl rings in molecule B is 0.67 (19)° which indicates the molecule is planar. In the crystal structure, molecules are linked together through intermolecular N—H···N interactions via R44(32) motifs to form 2-D arrays parallel to the ab-plane, Fig. 2 & Table 1. The short distances between the centroids of the six-membered rings prove the existence of π–π interactions [Cg1···Cg4i = 3.7466 (15) Å, (i) x, 1/2 - y, -1/2 + z; Cg2···Cg3i = 3.6894 (14) Å; Cg3···Cg4ii, (ii) 1 - x,-y, 1 - z; Cg1, Cg2, Cg3, and Cg4 are the centroids of the N1A/C1A–C5A, C7A–C12A, N1B/C1B–C5B, and C7B–C12B rings, respectively.

Experimental

The synthetic method has been described earlier (Fun et al., 2008). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution of (I) held at room temperature.

Refinement

The hydrogen atoms of the amino groups were located from the difference Fourier map and refined freely. The remaining hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å, and with Uiso(H) = 1.2 Ueq (H).

Figures

Fig. 1.
The molecular structure of (I) with atom labels and 50% displacement ellipsoids for non-H atoms.
Fig. 2.
The crystal packing of (I), viewed down the c-axis showing a part of the 2-D array and R44(32) ring motifs. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C13H10N4F000 = 928
Mr = 222.25Dx = 1.367 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1699 reflections
a = 13.5560 (8) Åθ = 2.3–30.1º
b = 12.3000 (7) ŵ = 0.09 mm1
c = 15.7514 (8) ÅT = 100 (1) K
β = 124.651 (2)ºNeedle, yellow
V = 2160.5 (2) Å30.45 × 0.09 × 0.07 mm
Z = 8

Data collection

Bruker SMART APEXII CCD area-detector diffractometer3810 independent reflections
Radiation source: fine-focus sealed tube2372 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.060
T = 100(1) Kθmax = 25.0º
[var phi] and ω scansθmin = 1.8º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −16→16
Tmin = 0.962, Tmax = 0.994k = −14→13
18251 measured reflectionsl = −18→18

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.074H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.219  w = 1/[σ2(Fo2) + (0.1298P)2 + 0.1507P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3810 reflectionsΔρmax = 0.63 e Å3
323 parametersΔρmin = −0.29 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N1A0.6639 (2)0.12555 (19)0.38263 (17)0.0217 (6)
N2A0.85668 (19)0.33048 (19)0.36498 (16)0.0148 (6)
N3A0.9556 (2)0.1387 (2)0.3572 (2)0.0277 (7)
N4A1.0578 (2)0.9061 (2)0.36363 (17)0.0227 (6)
C1A0.8618 (2)0.1349 (2)0.36579 (19)0.0185 (7)
C2A0.8126 (2)0.0361 (2)0.36880 (19)0.0200 (7)
H2AA0.8447−0.02920.36540.024*
C3A0.7163 (2)0.0359 (2)0.3769 (2)0.0210 (7)
H3AA0.6856−0.03120.37840.025*
C4A0.7119 (2)0.2198 (2)0.37969 (19)0.0184 (7)
H4AA0.67730.28330.38340.022*
C5A0.8084 (2)0.2316 (2)0.37159 (19)0.0156 (6)
C6A0.8305 (2)0.4207 (2)0.38827 (19)0.0173 (7)
H6AA0.77990.42070.41040.021*
C7A0.8790 (2)0.5238 (2)0.38050 (18)0.0140 (6)
C8A0.9575 (2)0.5272 (2)0.34913 (18)0.0189 (7)
H8AA0.97810.46320.33130.023*
C9A1.0037 (2)0.6245 (2)0.34472 (19)0.0203 (7)
H9AA1.05510.62630.32340.024*
C10A0.9739 (2)0.7212 (2)0.37224 (19)0.0156 (6)
C11A0.8961 (2)0.7180 (2)0.40366 (19)0.0185 (7)
H11A0.87550.78190.42170.022*
C12A0.8499 (2)0.6198 (2)0.40791 (19)0.0168 (7)
H12A0.79870.61790.42940.020*
C13A1.0218 (2)0.8236 (2)0.36773 (19)0.0173 (6)
C3B0.7831 (2)−0.3515 (2)0.62159 (19)0.0202 (7)
H3BA0.8150−0.41830.62110.024*
N2B0.63747 (19)−0.05867 (19)0.62738 (16)0.0183 (6)
N3B0.5661 (2)−0.2465 (2)0.66987 (19)0.0236 (6)
N4B0.4350 (2)0.5212 (2)0.62229 (18)0.0269 (6)
C1B0.6482 (2)−0.2527 (2)0.64597 (19)0.0160 (7)
C2B0.6988 (2)−0.3504 (2)0.6444 (2)0.0191 (7)
H2BA0.6757−0.41520.65880.023*
N1B0.8223 (2)−0.26157 (19)0.59977 (17)0.0225 (6)
C4B0.7739 (3)−0.1680 (2)0.6022 (2)0.0232 (7)
H4BA0.7994−0.10470.58780.028*
C5B0.6885 (2)−0.1573 (2)0.62439 (19)0.0153 (6)
C6B0.6661 (2)0.0318 (2)0.6087 (2)0.0207 (7)
H6BA0.72150.03250.59160.025*
C7B0.6158 (2)0.1352 (2)0.61273 (19)0.0156 (6)
C8B0.5309 (2)0.1391 (2)0.63648 (19)0.0177 (7)
H8BA0.50580.07510.65010.021*
C9B0.4837 (3)0.2381 (2)0.6398 (2)0.0197 (7)
H9BA0.42780.24070.65620.024*
C10B0.5212 (2)0.3334 (2)0.6183 (2)0.0183 (7)
C11B0.6066 (3)0.3310 (2)0.5956 (2)0.0219 (7)
H11B0.63210.39500.58230.026*
C12B0.6525 (3)0.2323 (2)0.5929 (2)0.0242 (7)
H12B0.70940.23030.57760.029*
C13B0.4722 (3)0.4381 (3)0.6207 (2)0.0222 (7)
H2NA0.999 (3)0.077 (3)0.366 (2)0.028 (9)*
H1NA0.996 (3)0.199 (3)0.365 (3)0.048 (12)*
H2NB0.527 (3)−0.184 (3)0.654 (2)0.044 (11)*
H1NB0.538 (3)−0.311 (3)0.675 (2)0.039 (10)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N1A0.0241 (14)0.0159 (14)0.0297 (13)−0.0010 (11)0.0180 (12)0.0011 (11)
N2A0.0128 (12)0.0135 (14)0.0182 (11)0.0012 (10)0.0089 (10)0.0005 (9)
N3A0.0293 (16)0.0154 (17)0.0494 (17)0.0009 (13)0.0290 (14)−0.0006 (13)
N4A0.0240 (14)0.0166 (15)0.0305 (13)0.0020 (11)0.0173 (12)0.0021 (11)
C1A0.0197 (15)0.0196 (18)0.0157 (13)−0.0026 (12)0.0097 (12)−0.0022 (12)
C2A0.0239 (16)0.0113 (17)0.0263 (15)−0.0020 (13)0.0152 (13)0.0005 (12)
C3A0.0225 (16)0.0148 (17)0.0260 (15)−0.0034 (13)0.0140 (13)0.0002 (12)
C4A0.0154 (15)0.0197 (18)0.0203 (14)0.0019 (12)0.0103 (13)−0.0010 (12)
C5A0.0153 (14)0.0134 (16)0.0165 (13)0.0020 (12)0.0082 (12)−0.0009 (11)
C6A0.0141 (14)0.0202 (18)0.0179 (13)0.0025 (12)0.0094 (12)−0.0004 (12)
C7A0.0119 (13)0.0140 (16)0.0130 (12)−0.0016 (11)0.0053 (11)0.0002 (11)
C8A0.0216 (15)0.0155 (17)0.0191 (14)0.0006 (12)0.0113 (13)−0.0034 (12)
C9A0.0213 (16)0.0210 (18)0.0226 (14)−0.0014 (13)0.0149 (13)−0.0006 (12)
C10A0.0147 (14)0.0136 (16)0.0161 (13)0.0008 (12)0.0073 (12)0.0008 (11)
C11A0.0171 (15)0.0163 (17)0.0209 (14)0.0033 (12)0.0101 (13)−0.0015 (12)
C12A0.0151 (14)0.0175 (17)0.0209 (14)0.0008 (12)0.0121 (12)−0.0004 (12)
C13A0.0169 (15)0.0178 (17)0.0178 (14)0.0000 (13)0.0102 (12)0.0006 (12)
C3B0.0184 (15)0.0199 (18)0.0216 (15)−0.0007 (12)0.0109 (13)−0.0029 (12)
N2B0.0195 (13)0.0145 (15)0.0220 (12)0.0044 (10)0.0124 (11)0.0027 (10)
N3B0.0266 (15)0.0137 (17)0.0392 (15)0.0009 (13)0.0239 (13)0.0023 (12)
N4B0.0262 (14)0.0168 (16)0.0405 (15)0.0033 (12)0.0206 (13)0.0012 (12)
C1B0.0094 (13)0.0216 (18)0.0130 (13)−0.0003 (12)0.0040 (11)0.0003 (11)
C2B0.0182 (15)0.0154 (17)0.0218 (14)0.0008 (12)0.0103 (13)0.0033 (12)
N1B0.0213 (14)0.0181 (15)0.0310 (13)0.0015 (11)0.0166 (12)−0.0030 (11)
C4B0.0260 (16)0.0171 (18)0.0287 (15)−0.0014 (13)0.0169 (14)0.0023 (13)
C5B0.0126 (14)0.0164 (17)0.0142 (13)0.0026 (11)0.0060 (11)−0.0008 (11)
C6B0.0220 (15)0.0198 (18)0.0285 (15)0.0034 (13)0.0193 (13)0.0038 (13)
C7B0.0137 (14)0.0169 (17)0.0163 (13)−0.0002 (12)0.0087 (12)−0.0007 (11)
C8B0.0206 (16)0.0141 (17)0.0195 (14)−0.0015 (12)0.0120 (13)0.0015 (11)
C9B0.0192 (15)0.0211 (18)0.0238 (14)−0.0015 (13)0.0152 (13)0.0001 (12)
C10B0.0188 (15)0.0151 (17)0.0168 (13)0.0004 (12)0.0077 (12)−0.0021 (11)
C11B0.0264 (16)0.0172 (18)0.0264 (15)−0.0005 (13)0.0175 (14)−0.0001 (12)
C12B0.0269 (17)0.0200 (18)0.0345 (17)0.0018 (13)0.0227 (15)0.0034 (13)
C13B0.0192 (15)0.0229 (19)0.0246 (15)−0.0025 (14)0.0124 (13)0.0000 (13)

Geometric parameters (Å, °)

N1A—C3A1.343 (3)C3B—N1B1.354 (3)
N1A—C4A1.343 (3)C3B—C2B1.379 (4)
N2A—C6A1.281 (3)C3B—H3BA0.9300
N2A—C5A1.413 (3)N2B—C6B1.267 (3)
N3A—C1A1.354 (4)N2B—C5B1.411 (3)
N3A—H2NA0.93 (3)N3B—C1B1.366 (4)
N3A—H1NA0.88 (4)N3B—H2NB0.88 (4)
N4A—C13A1.143 (3)N3B—H1NB0.90 (4)
C1A—C2A1.399 (4)N4B—C13B1.147 (4)
C1A—C5A1.422 (4)C1B—C2B1.391 (4)
C2A—C3A1.381 (4)C1B—C5B1.415 (4)
C2A—H2AA0.9300C2B—H2BA0.9300
C3A—H3AA0.9300N1B—C4B1.336 (4)
C4A—C5A1.392 (4)C4B—C5B1.393 (4)
C4A—H4AA0.9300C4B—H4BA0.9300
C6A—C7A1.466 (4)C6B—C7B1.461 (4)
C6A—H6AA0.9300C6B—H6BA0.9300
C7A—C12A1.389 (4)C7B—C12B1.396 (4)
C7A—C8A1.406 (4)C7B—C8B1.399 (4)
C8A—C9A1.370 (4)C8B—C9B1.390 (4)
C8A—H8AA0.9300C8B—H8BA0.9300
C9A—C10A1.402 (4)C9B—C10B1.394 (4)
C9A—H9AA0.9300C9B—H9BA0.9300
C10A—C11A1.398 (4)C10B—C11B1.393 (4)
C10A—C13A1.437 (4)C10B—C13B1.458 (4)
C11A—C12A1.379 (4)C11B—C12B1.375 (4)
C11A—H11A0.9300C11B—H11B0.9300
C12A—H12A0.9300C12B—H12B0.9300
C3A—N1A—C4A114.9 (2)N1B—C3B—C2B124.1 (3)
C6A—N2A—C5A120.6 (2)N1B—C3B—H3BA117.9
C1A—N3A—H2NA121.2 (19)C2B—C3B—H3BA117.9
C1A—N3A—H1NA123 (2)C6B—N2B—C5B121.8 (2)
H2NA—N3A—H1NA112 (3)C1B—N3B—H2NB115 (2)
N3A—C1A—C2A121.7 (3)C1B—N3B—H1NB115 (2)
N3A—C1A—C5A121.2 (3)H2NB—N3B—H1NB125 (3)
C2A—C1A—C5A117.0 (3)N3B—C1B—C2B122.7 (3)
C3A—C2A—C1A119.9 (3)N3B—C1B—C5B120.4 (3)
C3A—C2A—H2AA120.0C2B—C1B—C5B116.8 (3)
C1A—C2A—H2AA120.0C3B—C2B—C1B120.2 (3)
N1A—C3A—C2A124.6 (3)C3B—C2B—H2BA119.9
N1A—C3A—H3AA117.7C1B—C2B—H2BA119.9
C2A—C3A—H3AA117.7C4B—N1B—C3B115.3 (3)
N1A—C4A—C5A126.3 (3)N1B—C4B—C5B125.4 (3)
N1A—C4A—H4AA116.9N1B—C4B—H4BA117.3
C5A—C4A—H4AA116.9C5B—C4B—H4BA117.3
C4A—C5A—N2A126.5 (3)C4B—C5B—N2B125.6 (3)
C4A—C5A—C1A117.2 (3)C4B—C5B—C1B118.2 (3)
N2A—C5A—C1A116.2 (2)N2B—C5B—C1B116.2 (2)
N2A—C6A—C7A121.0 (2)N2B—C6B—C7B122.8 (3)
N2A—C6A—H6AA119.5N2B—C6B—H6BA118.6
C7A—C6A—H6AA119.5C7B—C6B—H6BA118.6
C12A—C7A—C8A119.3 (3)C12B—C7B—C8B118.8 (3)
C12A—C7A—C6A119.3 (2)C12B—C7B—C6B120.0 (2)
C8A—C7A—C6A121.3 (3)C8B—C7B—C6B121.2 (3)
C9A—C8A—C7A120.2 (3)C9B—C8B—C7B120.4 (3)
C9A—C8A—H8AA119.9C9B—C8B—H8BA119.8
C7A—C8A—H8AA119.9C7B—C8B—H8BA119.8
C8A—C9A—C10A120.3 (3)C8B—C9B—C10B119.2 (3)
C8A—C9A—H9AA119.8C8B—C9B—H9BA120.4
C10A—C9A—H9AA119.8C10B—C9B—H9BA120.4
C11A—C10A—C9A119.6 (3)C11B—C10B—C9B121.0 (3)
C11A—C10A—C13A119.7 (3)C11B—C10B—C13B118.9 (3)
C9A—C10A—C13A120.7 (3)C9B—C10B—C13B120.1 (3)
C12A—C11A—C10A119.8 (3)C12B—C11B—C10B118.9 (3)
C12A—C11A—H11A120.1C12B—C11B—H11B120.5
C10A—C11A—H11A120.1C10B—C11B—H11B120.5
C11A—C12A—C7A120.8 (3)C11B—C12B—C7B121.6 (3)
C11A—C12A—H12A119.6C11B—C12B—H12B119.2
C7A—C12A—H12A119.6C7B—C12B—H12B119.2
N4A—C13A—C10A178.6 (3)N4B—C13B—C10B178.8 (3)
N3A—C1A—C2A—C3A−179.5 (3)N1B—C3B—C2B—C1B0.1 (4)
C5A—C1A—C2A—C3A0.1 (4)N3B—C1B—C2B—C3B−178.8 (2)
C4A—N1A—C3A—C2A0.2 (4)C5B—C1B—C2B—C3B−0.7 (4)
C1A—C2A—C3A—N1A−0.3 (4)C2B—C3B—N1B—C4B0.4 (4)
C3A—N1A—C4A—C5A−0.1 (4)C3B—N1B—C4B—C5B−0.3 (4)
N1A—C4A—C5A—N2A177.7 (2)N1B—C4B—C5B—N2B179.8 (2)
N1A—C4A—C5A—C1A0.0 (4)N1B—C4B—C5B—C1B−0.3 (4)
C6A—N2A—C5A—C4A15.3 (4)C6B—N2B—C5B—C4B0.4 (4)
C6A—N2A—C5A—C1A−167.0 (2)C6B—N2B—C5B—C1B−179.5 (2)
N3A—C1A—C5A—C4A179.6 (2)N3B—C1B—C5B—C4B178.9 (2)
C2A—C1A—C5A—C4A−0.1 (3)C2B—C1B—C5B—C4B0.7 (4)
N3A—C1A—C5A—N2A1.7 (4)N3B—C1B—C5B—N2B−1.1 (4)
C2A—C1A—C5A—N2A−178.0 (2)C2B—C1B—C5B—N2B−179.3 (2)
C5A—N2A—C6A—C7A−179.3 (2)C5B—N2B—C6B—C7B−179.1 (2)
N2A—C6A—C7A—C12A−179.0 (2)N2B—C6B—C7B—C12B178.9 (3)
N2A—C6A—C7A—C8A−1.2 (4)N2B—C6B—C7B—C8B−0.9 (4)
C12A—C7A—C8A—C9A−0.7 (4)C12B—C7B—C8B—C9B0.3 (4)
C6A—C7A—C8A—C9A−178.5 (2)C6B—C7B—C8B—C9B−179.9 (2)
C7A—C8A—C9A—C10A0.5 (4)C7B—C8B—C9B—C10B0.6 (4)
C8A—C9A—C10A—C11A−0.4 (4)C8B—C9B—C10B—C11B−1.2 (4)
C8A—C9A—C10A—C13A−179.9 (2)C8B—C9B—C10B—C13B179.5 (2)
C9A—C10A—C11A—C12A0.4 (4)C9B—C10B—C11B—C12B1.0 (4)
C13A—C10A—C11A—C12A179.9 (2)C13B—C10B—C11B—C12B−179.7 (2)
C10A—C11A—C12A—C7A−0.5 (4)C10B—C11B—C12B—C7B−0.1 (4)
C8A—C7A—C12A—C11A0.7 (4)C8B—C7B—C12B—C11B−0.5 (4)
C6A—C7A—C12A—C11A178.6 (2)C6B—C7B—C12B—C11B179.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3A—H2NA···N4Ai0.92 (4)2.26 (4)3.155 (4)165 (3)
N3A—H1NA···N1Bii0.89 (4)2.33 (5)3.080 (4)143 (4)
N3B—H2NB···N1Aiii0.89 (4)2.42 (4)3.112 (4)136 (4)
N3B—H1NB···N4Bi0.90 (4)2.36 (4)3.220 (4)159 (2)

Symmetry codes: (i) x, y−1, z; (ii) −x+2, −y, −z+1; (iii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2327).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
  • Bomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, o53–o56. [PubMed]
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst.36, 1103.
  • Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308. [PMC free article] [PubMed]
  • Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. E61, o3551–o3553.
  • Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. C62, o1–o4. [PubMed]
  • Li, Y.-G., Zhu, H.-L., Chen, X.-Z. & Song, Y. (2005). Acta Cryst. E61, o4156–o4157.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Sun, Y.-X., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, o1707–o1708.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography