PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2405.
Published online 2008 November 22. doi:  10.1107/S1600536808038191
PMCID: PMC2959800

Bis[4-(2-nitro­benzene­sulfonamido)­pyridinium] hexa­fluoro­silicate

Abstract

In the title compound, 2C11H10N3O4S+·SiF6 2−, the short C—N distance [1.386 (2) Å] is indicative of a slight conjugation of N with the π electrons of the pyridinium ring, and with those of the sulfonyl group. The dihedral angle between the benzene and pyridinium rings is 77.48 (7)°. The crystal structure is stabilized by N—H(...)F and C—H(...)F hydrogen bonds. The Si atom of the anion lies on a special position.

Related literature

For zwitterionic forms of N-aryl­benzene­sulfonamides, see: Li et al. (2007 [triangle]); Yu & Li (2007 [triangle]). For reference geometric data, see: Allen et al. (1987 [triangle]). Damiano et al. (2007 [triangle]) describe the use of pyridinium derivatives for the construction of supra­molecular architectures.

An external file that holds a picture, illustration, etc.
Object name is e-64-o2405-scheme1.jpg

Experimental

Crystal data

  • 2C11H10N3O4S+·SiF6 2−
  • M r = 702.65
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2405-efi2.jpg
  • a = 22.691 (5) Å
  • b = 8.524 (2) Å
  • c = 14.776 (3) Å
  • β = 110.95 (3)°
  • V = 2669 (1) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.35 mm−1
  • T = 113 (2) K
  • 0.22 × 0.16 × 0.04 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005 [triangle]) T min = 0.927, T max = 0.986
  • 10620 measured reflections
  • 3064 independent reflections
  • 2456 reflections with I > 2σ(I)
  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.111
  • S = 1.06
  • 3064 reflections
  • 212 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.49 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808038191/lx2077sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038191/lx2077Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Organic pyridinium salts have been widely used in the construction of supramolecular architectures (Damiano et al., 2007). As part of our ongoing studies of supramolecular chemistry involving the pyridinium rings (Li et al., 2007), herein we report the crystal structure of the title compound, 4-(2-nitrophenylsulfonylamino)pyridinium hexafluorosilicate (Fig. 1).

In the cations of the title compound the short C—N distance [N2—C1 = 1.386 (2) Å] has a value between those of a typical C═N double and C—N single bond (1.47–1.50 Å and 1.34–1.38 Å, respectively; Allen et al., 1987). This might be indicative of a slight conjugation of N with π electrons of the pyridinium ring, and with those of the sulfonyl group. The dihedral angle between the benzene ring and the pyridinium ring is 77.48 (7)°. The crystal structure is stabilized by N—H···F and C—H···F hydrogen bonds (Table 1).

Experimental

A solution of 2-nitrobenzenesulfonyl chloride (2.2 g, 10 mmol) in CH2Cl2 (10 ml) was added dropwise to a suspension of 4-aminopyridine (0.9 g, 10 mmol) in CH2Cl2 (10 ml) at room temperature with stirring. The reaction mixture was stirred overnight. The yellow solid obtained was washed with warm water to obtain the title compound in a yield of 55.3%. A colorless single crystal suitable for X-ray analysis was obtained by slow evaporation of a fluorosilicic acid (10%) solution at room temperature over a period of a week.

Refinement

The N-bound H atoms were located in a difference density Fourier map and freely refined. The C-bound H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
View of one molecule of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level (arbitrary spheres for the H atoms). [Symmetry code: (i) -x + 2, y, -z + 3/2.]

Crystal data

2C11H10N3O4S+·SiF62–F000 = 1432
Mr = 702.65Dx = 1.749 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3772 reflections
a = 22.691 (5) Åθ = 1.9–27.5º
b = 8.524 (2) ŵ = 0.35 mm1
c = 14.776 (3) ÅT = 113 (2) K
β = 110.95 (3)ºBlock, colourless
V = 2669 (1) Å30.22 × 0.16 × 0.04 mm
Z = 4

Data collection

Rigaku Saturn CCD area-detector diffractometer3064 independent reflections
Radiation source: rotating anode2456 reflections with I > 2σ(I)
Monochromator: confocalRint = 0.053
Detector resolution: 7.31 pixels mm-1θmax = 27.5º
T = 113(2) Kθmin = 1.9º
ω and [var phi] scansh = −22→29
Absorption correction: multi-scan(CrystalClear; Rigaku/MSC, 2005)k = −10→11
Tmin = 0.927, Tmax = 0.986l = −18→19
10620 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111  w = 1/[σ2(Fo2) + (0.0513P)2 + 1.0092P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3064 reflectionsΔρmax = 0.38 e Å3
212 parametersΔρmin = −0.49 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S0.61983 (2)0.29097 (5)0.52758 (4)0.01969 (15)
O10.58452 (8)0.32136 (18)0.42794 (11)0.0273 (4)
O20.63133 (8)0.13308 (16)0.56235 (12)0.0282 (4)
O30.69576 (9)0.3188 (2)0.75056 (13)0.0473 (5)
O40.78705 (10)0.2230 (3)0.7737 (2)0.0843 (10)
N10.56160 (8)0.8430 (2)0.63088 (13)0.0192 (4)
H1N0.5583 (14)0.942 (3)0.639 (2)0.052 (9)*
N20.58416 (9)0.3725 (2)0.59405 (14)0.0194 (4)
H2N0.5795 (14)0.315 (3)0.628 (2)0.043 (9)*
N30.74149 (10)0.3008 (2)0.72703 (15)0.0363 (5)
C10.57577 (9)0.5317 (2)0.60418 (14)0.0167 (4)
C20.57532 (9)0.6398 (2)0.53308 (14)0.0177 (4)
H20.58000.60580.47480.021*
C30.56798 (9)0.7955 (2)0.54852 (15)0.0193 (4)
H30.56740.87040.50060.023*
C40.56074 (9)0.7410 (2)0.70051 (14)0.0195 (4)
H40.55550.77840.75770.023*
C50.56742 (9)0.5837 (2)0.68832 (14)0.0185 (4)
H50.56640.51090.73640.022*
C60.69299 (10)0.3905 (2)0.55358 (15)0.0192 (4)
C70.70103 (11)0.4743 (2)0.47788 (16)0.0258 (5)
H70.66750.47950.41690.031*
C80.75749 (12)0.5503 (3)0.49066 (18)0.0309 (5)
H80.76200.60780.43850.037*
C90.80672 (11)0.5435 (3)0.57748 (19)0.0307 (5)
H90.84510.59650.58540.037*
C100.80059 (10)0.4591 (3)0.65379 (18)0.0295 (5)
H100.83470.45300.71410.035*
C110.74405 (10)0.3839 (3)0.64084 (16)0.0249 (5)
Si1.00000.65155 (9)0.75000.01731 (19)
F10.94232 (7)0.64561 (14)0.79977 (10)0.0303 (3)
F20.96119 (6)0.51233 (14)0.67115 (9)0.0265 (3)
F30.96052 (7)0.79039 (14)0.67359 (9)0.0333 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S0.0207 (3)0.0158 (3)0.0229 (3)−0.0010 (2)0.0083 (2)−0.00471 (19)
O10.0294 (9)0.0304 (8)0.0199 (8)−0.0032 (7)0.0060 (6)−0.0071 (6)
O20.0324 (9)0.0145 (7)0.0426 (10)0.0012 (7)0.0196 (8)−0.0020 (7)
O30.0360 (11)0.0728 (14)0.0333 (11)0.0026 (10)0.0127 (8)0.0205 (10)
O40.0312 (11)0.112 (2)0.104 (2)0.0222 (13)0.0172 (12)0.0855 (17)
N10.0217 (9)0.0125 (8)0.0228 (10)0.0012 (7)0.0073 (7)−0.0012 (7)
N20.0221 (9)0.0136 (8)0.0242 (10)0.0014 (7)0.0104 (7)0.0011 (7)
N30.0227 (10)0.0443 (13)0.0350 (12)−0.0019 (9)0.0019 (9)0.0175 (10)
C10.0135 (9)0.0149 (9)0.0205 (10)−0.0005 (8)0.0045 (7)−0.0011 (8)
C20.0195 (10)0.0196 (10)0.0138 (10)0.0015 (8)0.0060 (8)−0.0017 (8)
C30.0184 (10)0.0182 (10)0.0195 (10)0.0009 (8)0.0048 (8)0.0026 (8)
C40.0178 (10)0.0244 (10)0.0165 (10)0.0018 (9)0.0064 (8)−0.0008 (8)
C50.0177 (10)0.0195 (10)0.0182 (10)−0.0008 (8)0.0063 (8)0.0003 (8)
C60.0202 (10)0.0168 (9)0.0219 (11)0.0020 (8)0.0092 (8)−0.0028 (8)
C70.0293 (12)0.0270 (11)0.0237 (12)0.0011 (10)0.0126 (9)−0.0029 (9)
C80.0367 (14)0.0297 (12)0.0359 (14)−0.0016 (11)0.0247 (11)−0.0002 (10)
C90.0225 (11)0.0292 (11)0.0457 (15)−0.0018 (10)0.0184 (10)−0.0011 (11)
C100.0187 (11)0.0289 (11)0.0377 (14)0.0019 (10)0.0060 (9)0.0040 (10)
C110.0216 (11)0.0230 (10)0.0295 (12)0.0044 (9)0.0083 (9)0.0044 (9)
Si0.0263 (4)0.0132 (4)0.0144 (4)0.0000.0098 (3)0.000
F10.0431 (8)0.0202 (6)0.0393 (8)0.0036 (6)0.0292 (7)0.0010 (5)
F20.0306 (7)0.0222 (6)0.0233 (7)−0.0018 (6)0.0056 (5)−0.0054 (5)
F30.0505 (9)0.0225 (7)0.0248 (7)0.0093 (6)0.0110 (6)0.0072 (5)

Geometric parameters (Å, °)

S—O11.426 (2)C4—H40.9500
S—O21.431 (2)C5—H50.9500
S—N21.634 (2)C6—C111.393 (3)
S—C61.779 (2)C6—C71.393 (3)
O3—N31.216 (3)C7—C81.387 (3)
O4—N31.214 (3)C7—H70.9500
N1—C31.338 (3)C8—C91.368 (3)
N1—C41.353 (3)C8—H80.9500
N1—H1N0.86 (3)C9—C101.385 (3)
N2—C11.386 (2)C9—H90.9500
N2—H2N0.73 (3)C10—C111.385 (3)
N3—C111.477 (3)C10—H100.9500
C1—C21.395 (3)Si—F3i1.6597 (14)
C1—C51.395 (3)Si—F31.6597 (14)
C2—C31.367 (3)Si—F21.6756 (13)
C2—H20.9500Si—F2i1.6756 (13)
C3—H30.9500Si—F1i1.7161 (13)
C4—C51.368 (3)Si—F11.7161 (13)
O1—S—O2120.30 (10)C7—C6—S116.81 (16)
O1—S—N2109.10 (10)C8—C7—C6120.7 (2)
O2—S—N2104.47 (10)C8—C7—H7119.7
O1—S—C6105.83 (10)C6—C7—H7119.7
O2—S—C6109.54 (10)C9—C8—C7120.8 (2)
N2—S—C6106.98 (10)C9—C8—H8119.6
C3—N1—C4122.20 (18)C7—C8—H8119.6
C3—N1—H1N118 (2)C8—C9—C10119.9 (2)
C4—N1—H1N120 (2)C8—C9—H9120.0
C1—N2—S126.70 (16)C10—C9—H9120.0
C1—N2—H2N122 (2)C11—C10—C9119.0 (2)
S—N2—H2N110 (2)C11—C10—H10120.5
O4—N3—O3123.2 (2)C9—C10—H10120.5
O4—N3—C11117.7 (2)C10—C11—C6122.2 (2)
O3—N3—C11119.09 (19)C10—C11—N3115.0 (2)
N2—C1—C2122.01 (19)C6—C11—N3122.8 (2)
N2—C1—C5118.34 (18)F3i—Si—F389.03 (10)
C2—C1—C5119.64 (18)F3i—Si—F2178.59 (7)
C3—C2—C1118.97 (19)F3—Si—F290.59 (7)
C3—C2—H2120.5F3i—Si—F2i90.59 (7)
C1—C2—H2120.5F3—Si—F2i178.59 (7)
N1—C3—C2120.30 (19)F2—Si—F2i89.82 (9)
N1—C3—H3119.8F3i—Si—F1i90.21 (7)
C2—C3—H3119.8F3—Si—F1i92.20 (7)
N1—C4—C5119.82 (19)F2—Si—F1i88.45 (7)
N1—C4—H4120.1F2i—Si—F1i89.16 (7)
C5—C4—H4120.1F3i—Si—F192.20 (7)
C4—C5—C1119.02 (19)F3—Si—F190.21 (7)
C4—C5—H5120.5F2—Si—F189.16 (7)
C1—C5—H5120.5F2i—Si—F188.45 (7)
C11—C6—C7117.3 (2)F1i—Si—F1176.62 (9)
C11—C6—S125.73 (17)
O1—S—N2—C1−65.8 (2)O2—S—C6—C7131.78 (16)
O2—S—N2—C1164.31 (18)N2—S—C6—C7−115.54 (17)
C6—S—N2—C148.2 (2)C11—C6—C7—C8−1.3 (3)
S—N2—C1—C224.9 (3)S—C6—C7—C8−177.48 (17)
S—N2—C1—C5−155.30 (16)C6—C7—C8—C90.6 (3)
N2—C1—C2—C3−178.80 (19)C7—C8—C9—C100.4 (3)
C5—C1—C2—C31.4 (3)C8—C9—C10—C11−0.6 (3)
C4—N1—C3—C2−1.5 (3)C9—C10—C11—C6−0.1 (3)
C1—C2—C3—N10.3 (3)C9—C10—C11—N3−178.4 (2)
C3—N1—C4—C50.9 (3)C7—C6—C11—C101.0 (3)
N1—C4—C5—C10.7 (3)S—C6—C11—C10176.86 (17)
N2—C1—C5—C4178.30 (18)C7—C6—C11—N3179.2 (2)
C2—C1—C5—C4−1.9 (3)S—C6—C11—N3−5.0 (3)
O1—S—C6—C11−175.15 (18)O4—N3—C11—C10−43.6 (3)
O2—S—C6—C11−44.1 (2)O3—N3—C11—C10132.9 (2)
N2—S—C6—C1168.6 (2)O4—N3—C11—C6138.1 (3)
O1—S—C6—C70.70 (18)O3—N3—C11—C6−45.4 (3)

Symmetry codes: (i) −x+2, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···F1ii0.86 (3)1.96 (3)2.789 (2)162 (3)
N2—H2N···F1iii0.73 (3)1.97 (3)2.690 (2)171 (3)
C4—H4···F2ii0.952.353.141 (2)141
C5—H5···F3iii0.952.503.426 (3)165

Symmetry codes: (ii) −x+3/2, y+1/2, −z+3/2; (iii) −x+3/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2077).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Damiano, T., Morton, D. & Nelson, A. (2007). Org. Biomol. Chem.5, 2735—2752. [PubMed]
  • Li, J. S., Chen, L. G., Zhang, Y. Y., Xu, Y. J., Deng, Y. & Huang, P. M. (2007). J. Chem. Res.6, 350–352.
  • Rigaku/MSC (2005). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yu, H.-J. & Li, J.-S. (2007). Acta Cryst. E63, o3399.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography