PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2368.
Published online 2008 November 20. doi:  10.1107/S1600536808036842
PMCID: PMC2959797

2,6-Bis[1-(2,6-diethyl­phenyl­imino)eth­yl]pyridine

Abstract

The title compound, C29H35N3, is the product of the condensation reaction between 2,6-diacetyl­pyridine and 2,6-diethyl­aniline. In the mol­ecule, the pyridyl ring is coplanar with the imino functional groups [torsion angles in the range 177.1 (2)–179.9 (2)°. The two 2,6-diethyl-substituted benzene rings are approximately perpendicular to the ethyl­idenepyridine central core, the dihedral angles being 88.7 (1) and 88.4 (1)°, respectively.

Related literature

For applications of pyridine derivatives, see: Tang & VanSlyke (1987 [triangle]); Wang (2001 [triangle]). For the synthesis of the title mol­ecule, see: Fan et al. (2004 [triangle]). For structures of other imino derivatives, see: Mentes et al. (2001 [triangle]); Huang et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2368-scheme1.jpg

Experimental

Crystal data

  • C29H35N3
  • M r = 425.60
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2368-efi1.jpg
  • a = 7.9390 (8) Å
  • b = 12.3208 (13) Å
  • c = 25.998 (3) Å
  • β = 96.234 (2)°
  • V = 2528.0 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 193 (2) K
  • 0.26 × 0.24 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.983, T max = 0.987
  • 13906 measured reflections
  • 4938 independent reflections
  • 2362 reflections with I > 2σ(I)
  • R int = 0.077

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.101
  • S = 0.95
  • 4938 reflections
  • 289 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808036842/bh2205sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036842/bh2205Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (20671025 and 20771030), the Young Found­ation of Heilongjiang Province in China (QC06C029), Heilongjiang Natural Science Foundation (B200603) and the Science Innovation Special Foundation of Harbin City, China (2006RFQXG037).

supplementary crystallographic information

Comment

Luminescent coordination compounds based on pyridine-type ligands have attracted intensive attention due to their potential application in areas of sensor technologies and electro-luminescent devices (Tang & VanSlyke, 1987; Wang, 2001). In order to explore potential luminescent complexes of this type, we prepared a series of bis(iminoalkyl)pyridine ligands by the condensation of 2,6-diacetylpyridine with the corresponding aniline in methanol (Fan et al., 2004). We report here the crystal structure of one of them, (I).

The molecular structure of (I) is shown in Fig. 1 and selected bond distances are given in Table 1. The pyridyl ring is coplanar with the two imino functional groups. The two imino C═N bonds have typical double-bond characteristics, with bond lengths of 1.272 (3) and 1.275 (2) Å, which are similar to that in BIP1, 1.266 (4) (Mentes et al., 2001) and in 2,6-bis[1-(2,6-dimethylphenylimino)ethyl]pyridine, 1.265 (2) and 1.271 (2) Å (Huang et al., 2006). Compound (I) possesses a structure which approximates Cs symmetry about a plane bisecting the central pyridyl ring. The two 2,6-diethyl-substituted phenyl rings are approximately perpendicular to the ethylidenepyridine ring, with the dihedral angles being 88.7° and 88.4°.

Experimental

The title compound was synthesized according to the literature method of Fan et al. (2004). To a solution of 2,6-diethylpyridine (1.5 g, 9.2 mmol) in absolute methanol (40 ml) was added 2,6-diethylaniline (4.6 ml, 27.7 mmol). After the addition of several drops of formic acid, the reaction mixture was refluxed for 24 h and then allowed to cool down to room temperature. The crude product precipitated as a yellow powder. Pure (I) was obtained as yellow block crystals in 84% yield (3.3 g) upon recrystallization from methanol, giving single crystals suitable for X-ray diffraction.

Refinement

The C-bound H atoms were positioned geometrically with C—H = 0.93–0.97 Å, and allowed to ride on their parent atoms with Uiso(H) = 1.5Ueq(carrier C) for methyl groups and Uiso(H) = 1.2Ueq(carrier C) otherwise.

Figures

Fig. 1.
View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Packing of (I) along a cell axis direction.

Crystal data

C29H35N3F000 = 920
Mr = 425.60Dx = 1.118 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 13906 reflections
a = 7.9390 (8) Åθ = 1.6–26.0º
b = 12.3208 (13) ŵ = 0.07 mm1
c = 25.998 (3) ÅT = 193 (2) K
β = 96.234 (2)ºBlock, yellow
V = 2528.0 (5) Å30.26 × 0.24 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer4938 independent reflections
Radiation source: fine-focus sealed tube2362 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.077
T = 193(2) Kθmax = 26.0º
[var phi] and ω scansθmin = 1.6º
Absorption correction: multi-scan(SADABS; Bruker, 1998)h = −9→9
Tmin = 0.983, Tmax = 0.987k = −15→12
13906 measured reflectionsl = −31→32

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.101  w = 1/[σ2(Fo2) + (0.02P)2] where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
4938 reflectionsΔρmax = 0.30 e Å3
289 parametersΔρmin = −0.19 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N1−0.5544 (2)0.61937 (15)−0.15400 (7)0.0377 (5)
N2−0.2647 (2)0.69242 (15)−0.04651 (7)0.0342 (5)
N30.0206 (2)0.83861 (14)0.04282 (7)0.0328 (5)
C1−0.4636 (3)0.60967 (19)−0.11083 (9)0.0353 (6)
C2−0.3645 (3)0.70650 (19)−0.09065 (9)0.0315 (6)
C3−0.3771 (3)0.80441 (18)−0.11695 (9)0.0379 (7)
H3B−0.44800.8113−0.14770.045*
C4−0.2830 (3)0.89137 (19)−0.09692 (9)0.0401 (7)
H4A−0.28930.9580−0.11390.048*
C5−0.1790 (3)0.87807 (18)−0.05110 (9)0.0346 (6)
H5A−0.11400.9355−0.03670.041*
C6−0.1734 (3)0.77816 (18)−0.02709 (9)0.0321 (6)
C7−0.0646 (3)0.75836 (19)0.02294 (9)0.0328 (6)
C8−0.4473 (3)0.50849 (18)−0.07891 (9)0.0551 (8)
H8A−0.51660.4524−0.09590.083*
H8B−0.48370.5227−0.04550.083*
H8C−0.33110.4854−0.07480.083*
C9−0.0684 (3)0.64705 (18)0.04624 (9)0.0516 (8)
H9A0.00570.64500.07800.077*
H9B−0.03140.59470.02250.077*
H9C−0.18180.63020.05310.077*
C10−0.6522 (3)0.52973 (18)−0.17576 (9)0.0350 (6)
C11−0.5797 (3)0.46024 (19)−0.20928 (9)0.0354 (6)
C12−0.6793 (3)0.3774 (2)−0.23284 (9)0.0460 (7)
H12A−0.63390.3312−0.25600.055*
C13−0.8439 (4)0.3630 (2)−0.22238 (10)0.0529 (8)
H13A−0.90890.3071−0.23820.063*
C14−0.9118 (3)0.4313 (2)−0.18850 (10)0.0531 (8)
H14A−1.02270.4202−0.18130.064*
C15−0.8197 (3)0.5162 (2)−0.16479 (10)0.0442 (7)
C16−0.3966 (3)0.4759 (2)−0.21860 (9)0.0542 (8)
H16A−0.37380.5533−0.21860.065*
H16B−0.32610.4447−0.18950.065*
C17−0.3415 (3)0.4290 (2)−0.26723 (10)0.0677 (9)
H17A−0.22330.4437−0.26850.102*
H17B−0.40610.4613−0.29670.102*
H17C−0.35990.3520−0.26770.102*
C18−0.8989 (3)0.5920 (2)−0.12862 (10)0.0595 (8)
H18A−0.99460.5565−0.11550.071*
H18B−0.81670.6094−0.09940.071*
C19−0.9567 (4)0.6936 (2)−0.15592 (11)0.0843 (11)
H19A−1.00650.7408−0.13240.126*
H19B−1.03920.6764−0.18450.126*
H19C−0.86160.7292−0.16850.126*
C200.1215 (3)0.82874 (17)0.09135 (9)0.0314 (6)
C210.2917 (3)0.79922 (18)0.09253 (10)0.0366 (6)
C220.3912 (3)0.80093 (19)0.14006 (11)0.0481 (7)
H22A0.50450.78060.14170.058*
C230.3256 (4)0.8321 (2)0.18473 (11)0.0512 (8)
H23A0.39470.83470.21600.061*
C240.1569 (4)0.85952 (19)0.18268 (10)0.0466 (7)
H24A0.11290.87990.21300.056*
C250.0504 (3)0.85759 (18)0.13639 (9)0.0367 (6)
C260.3694 (3)0.76989 (19)0.04370 (9)0.0458 (7)
H26A0.29240.72250.02270.055*
H26B0.47380.73020.05300.055*
C270.4070 (3)0.86848 (19)0.01206 (10)0.0595 (8)
H27A0.45470.8456−0.01850.089*
H27B0.48620.91460.03230.089*
H27C0.30400.90770.00240.089*
C28−0.1336 (3)0.8865 (2)0.13489 (9)0.0482 (7)
H28A−0.16700.88120.16960.058*
H28B−0.19990.83420.11340.058*
C29−0.1747 (4)0.9995 (2)0.11419 (10)0.0685 (9)
H29A−0.29381.01310.11420.103*
H29B−0.14471.00510.07950.103*
H29C−0.11171.05200.13570.103*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0406 (14)0.0347 (13)0.0358 (13)−0.0017 (10)−0.0047 (11)−0.0046 (10)
N20.0406 (14)0.0297 (12)0.0312 (12)−0.0026 (10)−0.0010 (10)−0.0022 (10)
N30.0371 (13)0.0301 (12)0.0309 (12)−0.0024 (10)0.0030 (10)−0.0034 (10)
C10.0411 (17)0.0318 (15)0.0320 (15)0.0018 (12)−0.0001 (13)−0.0012 (12)
C20.0369 (16)0.0278 (15)0.0293 (15)0.0002 (12)0.0020 (12)−0.0022 (12)
C30.0455 (18)0.0329 (15)0.0340 (15)−0.0013 (13)−0.0009 (13)−0.0007 (13)
C40.0536 (18)0.0265 (15)0.0396 (16)−0.0012 (13)0.0026 (14)0.0026 (12)
C50.0408 (16)0.0291 (15)0.0337 (15)−0.0042 (12)0.0029 (13)−0.0028 (12)
C60.0357 (16)0.0269 (14)0.0337 (15)−0.0014 (12)0.0044 (12)−0.0011 (12)
C70.0369 (16)0.0295 (15)0.0318 (15)−0.0001 (12)0.0039 (13)0.0007 (12)
C80.072 (2)0.0370 (16)0.0509 (18)−0.0122 (15)−0.0163 (16)0.0078 (14)
C90.064 (2)0.0381 (16)0.0479 (17)−0.0114 (14)−0.0170 (15)0.0096 (14)
C100.0386 (17)0.0332 (15)0.0311 (15)−0.0026 (13)−0.0057 (13)0.0008 (12)
C110.0316 (16)0.0389 (16)0.0344 (15)−0.0021 (13)−0.0021 (13)−0.0005 (13)
C120.053 (2)0.0466 (17)0.0372 (16)−0.0019 (15)−0.0017 (14)−0.0079 (13)
C130.052 (2)0.055 (2)0.0492 (18)−0.0161 (16)−0.0035 (16)−0.0064 (15)
C140.0335 (18)0.071 (2)0.0537 (19)−0.0119 (16)0.0004 (15)−0.0030 (17)
C150.0375 (18)0.0504 (18)0.0439 (17)0.0016 (14)0.0000 (14)−0.0038 (14)
C160.0444 (19)0.071 (2)0.0471 (18)0.0011 (15)0.0047 (14)−0.0214 (15)
C170.063 (2)0.087 (2)0.054 (2)0.0008 (18)0.0091 (16)−0.0043 (17)
C180.049 (2)0.061 (2)0.070 (2)0.0079 (16)0.0126 (16)0.0072 (17)
C190.110 (3)0.054 (2)0.096 (3)0.007 (2)0.042 (2)0.006 (2)
C200.0345 (16)0.0256 (14)0.0327 (15)−0.0062 (12)−0.0028 (13)0.0009 (11)
C210.0391 (17)0.0291 (15)0.0410 (16)−0.0041 (12)0.0016 (14)0.0062 (12)
C220.0389 (18)0.0431 (17)0.060 (2)−0.0043 (13)−0.0057 (16)0.0111 (15)
C230.056 (2)0.0497 (18)0.0442 (19)−0.0110 (16)−0.0113 (16)0.0052 (15)
C240.062 (2)0.0439 (17)0.0340 (16)−0.0109 (15)0.0035 (15)−0.0012 (13)
C250.0407 (17)0.0341 (15)0.0351 (16)−0.0057 (13)0.0038 (14)0.0008 (12)
C260.0416 (18)0.0397 (16)0.0567 (18)0.0045 (13)0.0072 (14)0.0047 (14)
C270.070 (2)0.0473 (18)0.066 (2)0.0092 (15)0.0282 (17)0.0120 (15)
C280.051 (2)0.0554 (19)0.0396 (16)−0.0051 (15)0.0118 (14)−0.0067 (14)
C290.064 (2)0.076 (2)0.068 (2)0.0192 (17)0.0232 (17)0.0168 (18)

Geometric parameters (Å, °)

N1—C11.272 (3)C16—H16A0.9700
N1—C101.431 (3)C16—H16B0.9700
N2—C21.333 (2)C17—H17A0.9600
N2—C61.348 (2)C17—H17B0.9600
N3—C71.275 (2)C17—H17C0.9600
N3—C201.424 (3)C18—C191.486 (3)
C1—C21.493 (3)C18—H18A0.9700
C1—C81.495 (3)C18—H18B0.9700
C2—C31.385 (3)C19—H19A0.9600
C3—C41.376 (3)C19—H19B0.9600
C3—H3B0.9300C19—H19C0.9600
C4—C51.383 (3)C20—C211.397 (3)
C4—H4A0.9300C20—C251.400 (3)
C5—C61.379 (3)C21—C221.393 (3)
C5—H5A0.9300C21—C261.514 (3)
C6—C71.501 (3)C22—C231.378 (3)
C7—C91.501 (3)C22—H22A0.9300
C8—H8A0.9600C23—C241.376 (3)
C8—H8B0.9600C23—H23A0.9300
C8—H8C0.9600C24—C251.394 (3)
C9—H9A0.9600C24—H24A0.9300
C9—H9B0.9600C25—C281.500 (3)
C9—H9C0.9600C26—C271.515 (3)
C10—C111.390 (3)C26—H26A0.9700
C10—C151.399 (3)C26—H26B0.9700
C11—C121.391 (3)C27—H27A0.9600
C11—C161.511 (3)C27—H27B0.9600
C12—C131.375 (3)C27—H27C0.9600
C12—H12A0.9300C28—C291.515 (3)
C13—C141.370 (3)C28—H28A0.9700
C13—H13A0.9300C28—H28B0.9700
C14—C151.383 (3)C29—H29A0.9600
C14—H14A0.9300C29—H29B0.9600
C15—C181.511 (3)C29—H29C0.9600
C16—C171.498 (3)
C1—N1—C10120.5 (2)C16—C17—H17A109.5
C2—N2—C6117.7 (2)C16—C17—H17B109.5
C7—N3—C20121.0 (2)H17A—C17—H17B109.5
N1—C1—C2117.5 (2)C16—C17—H17C109.5
N1—C1—C8125.1 (2)H17A—C17—H17C109.5
C2—C1—C8117.4 (2)H17B—C17—H17C109.5
N2—C2—C3122.9 (2)C19—C18—C15110.6 (2)
N2—C2—C1116.1 (2)C19—C18—H18A109.5
C3—C2—C1121.0 (2)C15—C18—H18A109.5
C4—C3—C2119.0 (2)C19—C18—H18B109.5
C4—C3—H3B120.5C15—C18—H18B109.5
C2—C3—H3B120.5H18A—C18—H18B108.1
C3—C4—C5118.8 (2)C18—C19—H19A109.5
C3—C4—H4A120.6C18—C19—H19B109.5
C5—C4—H4A120.6H19A—C19—H19B109.5
C6—C5—C4118.9 (2)C18—C19—H19C109.5
C6—C5—H5A120.6H19A—C19—H19C109.5
C4—C5—H5A120.6H19B—C19—H19C109.5
N2—C6—C5122.7 (2)C21—C20—C25121.7 (2)
N2—C6—C7115.6 (2)C21—C20—N3119.4 (2)
C5—C6—C7121.7 (2)C25—C20—N3118.7 (2)
N3—C7—C6117.1 (2)C22—C21—C20118.0 (2)
N3—C7—C9125.3 (2)C22—C21—C26120.3 (2)
C6—C7—C9117.6 (2)C20—C21—C26121.7 (2)
C1—C8—H8A109.5C23—C22—C21121.5 (3)
C1—C8—H8B109.5C23—C22—H22A119.3
H8A—C8—H8B109.5C21—C22—H22A119.3
C1—C8—H8C109.5C24—C23—C22119.4 (3)
H8A—C8—H8C109.5C24—C23—H23A120.3
H8B—C8—H8C109.5C22—C23—H23A120.3
C7—C9—H9A109.5C23—C24—C25121.7 (3)
C7—C9—H9B109.5C23—C24—H24A119.1
H9A—C9—H9B109.5C25—C24—H24A119.1
C7—C9—H9C109.5C24—C25—C20117.7 (2)
H9A—C9—H9C109.5C24—C25—C28121.1 (2)
H9B—C9—H9C109.5C20—C25—C28121.2 (2)
C11—C10—C15121.4 (2)C21—C26—C27112.7 (2)
C11—C10—N1118.6 (2)C21—C26—H26A109.0
C15—C10—N1119.9 (2)C27—C26—H26A109.0
C10—C11—C12118.2 (2)C21—C26—H26B109.0
C10—C11—C16119.5 (2)C27—C26—H26B109.0
C12—C11—C16122.2 (2)H26A—C26—H26B107.8
C13—C12—C11121.0 (3)C26—C27—H27A109.5
C13—C12—H12A119.5C26—C27—H27B109.5
C11—C12—H12A119.5H27A—C27—H27B109.5
C14—C13—C12119.8 (3)C26—C27—H27C109.5
C14—C13—H13A120.1H27A—C27—H27C109.5
C12—C13—H13A120.1H27B—C27—H27C109.5
C13—C14—C15121.7 (3)C25—C28—C29113.5 (2)
C13—C14—H14A119.2C25—C28—H28A108.9
C15—C14—H14A119.2C29—C28—H28A108.9
C14—C15—C10117.9 (2)C25—C28—H28B108.9
C14—C15—C18120.7 (3)C29—C28—H28B108.9
C10—C15—C18121.4 (2)H28A—C28—H28B107.7
C17—C16—C11117.4 (2)C28—C29—H29A109.5
C17—C16—H16A108.0C28—C29—H29B109.5
C11—C16—H16A108.0H29A—C29—H29B109.5
C17—C16—H16B108.0C28—C29—H29C109.5
C11—C16—H16B108.0H29A—C29—H29C109.5
H16A—C16—H16B107.2H29B—C29—H29C109.5
C10—N1—C1—C2179.8 (2)C12—C13—C14—C151.0 (4)
C10—N1—C1—C80.3 (4)C13—C14—C15—C10−1.0 (4)
C6—N2—C2—C30.2 (3)C13—C14—C15—C18178.4 (2)
C6—N2—C2—C1−179.9 (2)C11—C10—C15—C14−0.2 (4)
N1—C1—C2—N2−177.1 (2)N1—C10—C15—C14177.2 (2)
C8—C1—C2—N22.4 (3)C11—C10—C15—C18−179.6 (2)
N1—C1—C2—C32.8 (3)N1—C10—C15—C18−2.3 (4)
C8—C1—C2—C3−177.7 (2)C10—C11—C16—C17−158.5 (2)
N2—C2—C3—C40.0 (4)C12—C11—C16—C1722.1 (4)
C1—C2—C3—C4−179.9 (2)C14—C15—C18—C19−98.9 (3)
C2—C3—C4—C50.0 (4)C10—C15—C18—C1980.6 (3)
C3—C4—C5—C6−0.1 (3)C7—N3—C20—C2191.8 (3)
C2—N2—C6—C5−0.3 (3)C7—N3—C20—C25−93.3 (3)
C2—N2—C6—C7179.4 (2)C25—C20—C21—C22−1.1 (3)
C4—C5—C6—N20.3 (3)N3—C20—C21—C22173.6 (2)
C4—C5—C6—C7−179.4 (2)C25—C20—C21—C26−178.9 (2)
C20—N3—C7—C6177.2 (2)N3—C20—C21—C26−4.2 (3)
C20—N3—C7—C9−1.0 (4)C20—C21—C22—C23−0.9 (4)
N2—C6—C7—N3−178.6 (2)C26—C21—C22—C23177.0 (2)
C5—C6—C7—N31.1 (3)C21—C22—C23—C241.7 (4)
N2—C6—C7—C9−0.2 (3)C22—C23—C24—C25−0.6 (4)
C5—C6—C7—C9179.5 (2)C23—C24—C25—C20−1.3 (4)
C1—N1—C10—C11−91.4 (3)C23—C24—C25—C28179.4 (2)
C1—N1—C10—C1591.2 (3)C21—C20—C25—C242.1 (3)
C15—C10—C11—C121.4 (3)N3—C20—C25—C24−172.6 (2)
N1—C10—C11—C12−175.95 (19)C21—C20—C25—C28−178.5 (2)
C15—C10—C11—C16−178.0 (2)N3—C20—C25—C286.8 (3)
N1—C10—C11—C164.6 (3)C22—C21—C26—C27−100.8 (3)
C10—C11—C12—C13−1.5 (4)C20—C21—C26—C2777.0 (3)
C16—C11—C12—C13177.9 (2)C24—C25—C28—C29102.6 (3)
C11—C12—C13—C140.3 (4)C20—C25—C28—C29−76.7 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2205).

References

  • Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fan, R.-Q., Zhu, D.-S., Mu, Y., Li, G.-H., Yang, Y.-L., Su, Q. & Feng, S.-H. (2004). Eur. J. Inorg. Chem. pp. 4891–4897.
  • Huang, Y.-B., Ma, X.-L., Zheng, S.-N., Chen, J.-X. & Wei, C.-X. (2006). Acta Cryst. E62, o3044–o3045.
  • Mentes, A., Fawcett, J. & Kemmitt, R. D. W. (2001). Acta Cryst. E57, o424–o425.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tang, C. W. & VanSlyke, S. A. (1987). Appl. Phys. Lett.51, 913–915.
  • Wang, S. (2001). Coord. Chem. Rev.215, 79–98.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography