PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2360.
Published online 2008 November 13. doi:  10.1107/S1600536808036775
PMCID: PMC2959796

1,4-Bis[2-(2-pyrid­yl)-1H-imidazol-1-yl]butane

Abstract

The title compound, C20H20N6, was isolated from dimethyl sulfoxide solution using 2-(1H-imidazol-2-yl)pyridine and 1,4-dichloro­butane in the presence of NaOH.

Related literature

For the coordination capabilities and catalytic properties of the metal complexes of N-heterocyclic precursors, see: Chiswell et al. (1964 [triangle]); Herrmann (2002 [triangle]); Herrmann & Kocher (1997 [triangle]). For metal complexes with N-donor ligands, see: Carlucci et al. (2005 [triangle]);

An external file that holds a picture, illustration, etc.
Object name is e-64-o2360-scheme1.jpg

Experimental

Crystal data

  • C20H20N6
  • M r = 344.42
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2360-efi1.jpg
  • a = 11.0426 (10) Å
  • b = 13.4510 (12) Å
  • c = 12.7081 (11) Å
  • β = 111.213 (2)°
  • V = 1759.7 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 (2) K
  • 0.43 × 0.39 × 0.36 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.938, T max = 0.966
  • 10708 measured reflections
  • 4139 independent reflections
  • 1705 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.125
  • S = 1.03
  • 4139 reflections
  • 215 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]; data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808036775/wk2095sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036775/wk2095Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Numerous flexible or rigid N-heterocyclic precursors have been synthesized and studied because they attract considerable attention because of their diverse coordination capabilities and the important catalytic properties of their metal complexes (Herrmann, 2002; Herrmann & Kocher, 1997). A lot of metal complexes with N-donor ligands, especially ligands with imidazole-type rings separated by an aromatic spacer, have been isolated with various structures (Carlucci et al., 2005). In the present work, the crystal structure of an N-donor ligand, (I), a newspacer for metal organic frameworks, is reported.

In the molecular structure of the title compound, (I), bond lengths and angles are normal. The dihedral angles between the imidazole ring and the pyridine ring in the same 2-(pyridin-2-yl)-1H-imidazol group are 11.6 and 37.8°, respectively. The dihedral angle between two imidazole rings in the same ligand is 13.2°. And the corresponding angle between two pyridine rings in the same ligand is 36.4°.

Experimental

The predecessor 2-(2-pyridyl)imidazole was synthesized according to the literature (Chiswell et al., 1964). A mixture of 2-(2-pyridyl)imidazole (7.25 g, 50 mmol) and NaOH (2.00 g, 50 mmol) in DMSO (20 ml) was stirred at 60°Cfor 1 h, and the 1,4-dichlorobutane(3.18 g, 25 mmol) was added. The mixture was cooled to room temperature after stirring at 60°Cfor 24 h and then poured into 200 ml of water. A yellow solid formed immediately, which was isolated by filtration in 80% yield after drying in air. Crystals suitable for X-ray diffraction were isolated from 65% ethanol.

Refinement

All H atoms on C atoms were poisitioned geometrically and refined as idea positions, with C—H = 0.93–0.97 Å, and Uiso=1.2 Ueq (C).

Figures

Fig. 1.
A view of the molecule of (I). Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C20H20N6F000 = 728
Mr = 344.42Dx = 1.300 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 795 reflections
a = 11.0426 (10) Åθ = 2.0–28.3º
b = 13.4510 (12) ŵ = 0.08 mm1
c = 12.7081 (11) ÅT = 293 (2) K
β = 111.213 (2)ºBlock, colorless
V = 1759.7 (3) Å30.43 × 0.39 × 0.36 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer4139 independent reflections
Radiation source: fine-focus sealed tube1705 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.031
T = 293(2) Kθmax = 28.3º
ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −14→7
Tmin = 0.938, Tmax = 0.966k = −17→17
10708 measured reflectionsl = −14→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.125  w = 1/[σ2(Fo2) + (0.04P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4139 reflectionsΔρmax = 0.49 e Å3
215 parametersΔρmin = −0.47 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.34332 (12)0.07519 (9)0.63433 (12)0.0497 (5)
C10.39593 (14)0.06046 (10)0.75039 (11)0.0417 (6)
C20.46903 (15)−0.02419 (12)0.79408 (9)0.0518 (7)
H20.5042−0.03410.87170.062*
C30.48952 (15)−0.09411 (9)0.72171 (14)0.0624 (8)
H30.5384−0.15080.75090.075*
C40.43691 (16)−0.07938 (11)0.60565 (13)0.0589 (7)
H40.4506−0.12620.55720.071*
C50.36382 (15)0.00527 (12)0.56196 (8)0.0590 (7)
H50.32860.01510.48430.071*
C60.37230 (15)0.13348 (10)0.81951 (12)0.0395 (6)
N30.43588 (14)0.13294 (11)0.93287 (12)0.0502 (5)
C70.39003 (16)0.20944 (13)0.97707 (11)0.0534 (7)
H70.41690.22621.05310.064*
C80.29810 (15)0.25725 (11)0.89103 (13)0.0488 (6)
H80.25080.31260.89760.059*
N40.28714 (14)0.21030 (11)0.79365 (11)0.0413 (5)
C9−0.1363 (2)0.11723 (18)0.21435 (19)0.0467 (6)
C10−0.1977 (3)0.0643 (2)0.1161 (2)0.0572 (7)
H10−0.28210.08040.06970.069*
C11−0.1323 (3)−0.0127 (2)0.0876 (2)0.0694 (8)
H11−0.1715−0.04880.02150.083*
C12−0.0090 (3)−0.03454 (19)0.1584 (2)0.0656 (8)
H120.0381−0.08520.14110.079*
C130.0436 (3)0.0197 (2)0.2550 (2)0.0633 (7)
H130.12680.00300.30360.076*
C14−0.2034 (2)0.20182 (19)0.24123 (19)0.0474 (6)
C15−0.2823 (2)0.3070 (2)0.3309 (2)0.0606 (7)
H15−0.30170.34070.38680.073*
C16−0.3281 (3)0.3272 (2)0.2197 (2)0.0679 (8)
H16−0.38500.37890.18630.081*
C170.2028 (2)0.24607 (16)0.68080 (17)0.0451 (6)
H17A0.25040.24120.63020.054*
H17B0.18370.31580.68660.054*
C180.0760 (2)0.19055 (17)0.62919 (17)0.0458 (6)
H18A0.02660.19500.67850.055*
H18B0.09320.12090.62050.055*
C19−0.0021 (2)0.23502 (17)0.51472 (17)0.0463 (6)
H19A−0.02060.30410.52470.056*
H19B0.04990.23320.46740.056*
C20−0.1283 (2)0.18114 (18)0.45550 (17)0.0521 (7)
H20A−0.11030.11210.44450.062*
H20B−0.18070.18270.50250.062*
N2−0.0161 (2)0.09507 (15)0.28481 (16)0.0547 (6)
N5−0.20146 (18)0.22651 (15)0.34553 (15)0.0499 (5)
N6−0.2800 (2)0.26188 (17)0.16254 (16)0.0592 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0433 (12)0.0591 (14)0.0435 (11)0.0011 (11)0.0120 (10)0.0039 (10)
C10.0336 (14)0.0477 (16)0.0433 (14)−0.0021 (12)0.0134 (11)0.0033 (12)
C20.0542 (17)0.0541 (17)0.0480 (15)0.0130 (14)0.0197 (13)0.0063 (13)
C30.0624 (19)0.0572 (18)0.0724 (19)0.0184 (15)0.0300 (16)0.0105 (15)
C40.0576 (18)0.0644 (19)0.0600 (18)0.0036 (15)0.0275 (15)−0.0020 (14)
C50.0577 (18)0.072 (2)0.0489 (15)−0.0003 (16)0.0212 (14)−0.0070 (15)
C60.0390 (14)0.0402 (15)0.0386 (14)0.0023 (12)0.0132 (12)−0.0029 (11)
N30.0484 (13)0.0572 (14)0.0408 (12)0.0002 (11)0.0113 (10)0.0023 (10)
C70.0606 (18)0.0584 (17)0.0407 (14)−0.0019 (15)0.0179 (14)−0.0079 (13)
C80.0547 (17)0.0471 (16)0.0462 (15)0.0000 (13)0.0202 (13)−0.0054 (13)
N40.0409 (12)0.0417 (12)0.0396 (11)0.0002 (10)0.0122 (10)−0.0003 (9)
C90.0460 (17)0.0529 (17)0.0424 (14)−0.0080 (14)0.0174 (14)0.0021 (12)
C100.0557 (18)0.0694 (19)0.0465 (16)−0.0118 (16)0.0184 (14)−0.0005 (14)
C110.084 (2)0.067 (2)0.0632 (19)−0.0193 (19)0.0340 (19)−0.0153 (16)
C120.077 (2)0.0563 (19)0.0702 (19)−0.0037 (17)0.0342 (18)−0.0105 (16)
C130.0542 (18)0.0583 (18)0.0733 (19)0.0057 (16)0.0181 (16)−0.0025 (15)
C140.0381 (15)0.0605 (18)0.0423 (15)−0.0038 (14)0.0128 (13)−0.0029 (13)
C150.0445 (16)0.077 (2)0.0548 (17)0.0102 (16)0.0115 (14)−0.0114 (15)
C160.0498 (18)0.081 (2)0.0626 (18)0.0179 (16)0.0081 (16)0.0013 (16)
C170.0429 (15)0.0441 (15)0.0433 (13)0.0031 (13)0.0096 (12)0.0067 (11)
C180.0421 (15)0.0497 (15)0.0438 (14)0.0013 (13)0.0132 (12)0.0046 (11)
C190.0407 (14)0.0539 (16)0.0398 (13)0.0023 (13)0.0091 (12)0.0027 (12)
C200.0454 (16)0.0670 (18)0.0435 (15)−0.0044 (14)0.0157 (13)−0.0002 (12)
N20.0478 (14)0.0564 (14)0.0553 (13)0.0004 (12)0.0132 (12)−0.0049 (11)
N50.0387 (12)0.0689 (15)0.0376 (12)0.0013 (11)0.0085 (10)−0.0021 (11)
N60.0482 (14)0.0759 (17)0.0483 (13)0.0105 (13)0.0112 (12)0.0039 (12)

Geometric parameters (Å, °)

N1—C11.3900C11—H110.9300
N1—C51.3900C12—C131.365 (3)
C1—C21.3900C12—H120.9300
C1—C61.40364C13—N21.337 (3)
C2—C31.3900C13—H130.9300
C2—H20.9300C14—N61.325 (3)
C3—C41.3900C14—N51.359 (3)
C3—H30.9300C15—C161.345 (3)
C4—C51.3900C15—N51.372 (3)
C4—H40.9300C15—H150.9300
C5—H50.9300C16—N61.364 (3)
C6—N31.3551C16—H160.9300
C6—N41.3551C17—C181.511 (3)
N3—C71.3551C17—H17A0.9700
C7—C81.3551C17—H17B0.9700
C7—H70.9300C18—C191.520 (3)
C8—N41.3551C18—H18A0.9700
C8—H80.9300C18—H18B0.9700
N4—C171.480 (2)C19—C201.509 (3)
C9—N21.338 (3)C19—H19A0.9700
C9—C101.383 (3)C19—H19B0.9700
C9—C141.464 (3)C20—N51.470 (3)
C10—C111.385 (3)C20—H20A0.9700
C10—H100.9300C20—H20B0.9700
C11—C121.365 (3)
C1—N1—C5120.0N2—C13—C12124.6 (2)
N1—C1—C2120.0N2—C13—H13117.7
N1—C1—C6117.60C12—C13—H13117.7
C2—C1—C6122.40N6—C14—N5111.6 (2)
C1—C2—C3120.0N6—C14—C9122.5 (2)
C1—C2—H2120.0N5—C14—C9125.9 (2)
C3—C2—H2120.0C16—C15—N5106.3 (2)
C4—C3—C2120.0C16—C15—H15126.9
C4—C3—H3120.0N5—C15—H15126.9
C2—C3—H3120.0C15—C16—N6111.0 (2)
C3—C4—C5120.0C15—C16—H16124.5
C3—C4—H4120.0N6—C16—H16124.5
C5—C4—H4120.0N4—C17—C18114.81 (17)
C4—C5—N1120.0N4—C17—H17A108.6
C4—C5—H5120.0C18—C17—H17A108.6
N1—C5—H5120.0N4—C17—H17B108.6
N3—C6—N4108.0C18—C17—H17B108.6
N3—C6—C1121.29H17A—C17—H17B107.5
N4—C6—C1130.66C17—C18—C19109.66 (18)
C6—N3—C7108.0C17—C18—H18A109.7
N3—C7—C8108.0C19—C18—H18A109.7
N3—C7—H7126.0C17—C18—H18B109.7
C8—C7—H7126.0C19—C18—H18B109.7
C7—C8—N4108.0H18A—C18—H18B108.2
C7—C8—H8126.0C20—C19—C18112.96 (19)
N4—C8—H8126.0C20—C19—H19A109.0
C6—N4—C8108.0C18—C19—H19A109.0
C6—N4—C17128.42 (14)C20—C19—H19B109.0
C8—N4—C17123.39 (14)C18—C19—H19B109.0
N2—C9—C10122.2 (2)H19A—C19—H19B107.8
N2—C9—C14118.7 (2)N5—C20—C19111.43 (19)
C10—C9—C14119.1 (2)N5—C20—H20A109.3
C9—C10—C11119.3 (3)C19—C20—H20A109.3
C9—C10—H10120.4N5—C20—H20B109.3
C11—C10—H10120.4C19—C20—H20B109.3
C12—C11—C10118.6 (3)H20A—C20—H20B108.0
C12—C11—H11120.7C13—N2—C9116.8 (2)
C10—C11—H11120.7C14—N5—C15106.33 (19)
C13—C12—C11118.5 (3)C14—N5—C20129.4 (2)
C13—C12—H12120.8C15—N5—C20124.2 (2)
C11—C12—H12120.8C14—N6—C16104.8 (2)
C5—N1—C1—C20.0C10—C9—C14—N5141.1 (2)
N1—C1—C2—C30.0N5—C15—C16—N60.5 (3)
C1—C2—C3—C40.0C6—N4—C17—C1883.6 (2)
C2—C3—C4—C50.0C8—N4—C17—C18−102.05 (19)
C3—C4—C5—N10.0N4—C17—C18—C19179.30 (18)
C1—N1—C5—C40.0C17—C18—C19—C20177.87 (19)
N4—C6—N3—C70.0C18—C19—C20—N5179.65 (19)
C6—N3—C7—C80.0C12—C13—N2—C90.7 (4)
N3—C7—C8—N40.0C10—C9—N2—C131.0 (3)
N3—C6—N4—C80.0C14—C9—N2—C13−177.6 (2)
N3—C6—N4—C17175.07 (18)N6—C14—N5—C150.2 (3)
C1—C6—N4—C17−7.4 (2)C9—C14—N5—C15−176.9 (2)
C7—C8—N4—C60.0N6—C14—N5—C20−178.8 (2)
C7—C8—N4—C17−175.38 (17)C9—C14—N5—C204.2 (4)
N2—C9—C10—C11−1.6 (3)C16—C15—N5—C14−0.4 (3)
C14—C9—C10—C11176.9 (2)C16—C15—N5—C20178.6 (2)
C9—C10—C11—C120.6 (4)C19—C20—N5—C1494.6 (3)
C10—C11—C12—C131.0 (4)C19—C20—N5—C15−84.2 (3)
C11—C12—C13—N2−1.7 (4)N5—C14—N6—C160.1 (3)
N2—C9—C14—N6142.9 (2)C9—C14—N6—C16177.3 (2)
C10—C9—C14—N6−35.7 (3)C15—C16—N6—C14−0.4 (3)
N2—C9—C14—N5−40.3 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WK2095).

References

  • Bruker (1997). SMART Bruker AXS Inc., Madison,Wisconsin, USA.
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Carlucci, L., Ciani, G. & Proserpio, D. M. (2005). Cryst. Growth Des.5, 37–39.
  • Chiswell, B., Lioss, F. & Morris, B. S. (1964). Inorg Chem 3, 110–114.
  • Herrmann, W. A. (2002). Angew. Chem. Int. Ed.41, 1290–1309. [PubMed]
  • Herrmann, W. A. & Kocher, C. (1997). Angew. Chem. Int. Ed. Engl.36, 2162–2187.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography