PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1530–m1531.
Published online 2008 November 13. doi:  10.1107/S1600536808036337
PMCID: PMC2959792

[3-(Dimethyl­amino)benzoato]triphenyl­tin(IV)

Abstract

In the title compound, [Sn(C6H5)3(C9H10NO2)], the Sn atom is coordinated by three phenyl groups and a carboxyl­ate anion in a distorted tetra­hedral geometry. An intra­molecular C—H(...)O inter­action forms an S(7) ring motif. The dihedral angles between the benzoate group and the other three phenyl rings are 76.94 (8), 66.82 (8) and 42.34 (9)°. The crystal structure is further stabilized by inter­molecular C—H(...)π inter­actions.

Related literature

For hydrogen-bond motifs, see Bernstein et al. (1995 [triangle]). For values of bond lengths, see Allen et al. (1987 [triangle]). For related literature on triorganotin(IV) complexes see, for example: Willem et al. (1997 [triangle]); Novelli et al. (1999 [triangle]); Gielen et al. (2000 [triangle]); Tian et al. (2005 [triangle]); Baul et al. (2001 [triangle]); Win et al. (2006 [triangle], 2007a [triangle],b [triangle]); Yeap & Teoh (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1530-scheme1.jpg

Experimental

Crystal data

  • [Sn(C6H5)3(C9H10NO2)]
  • M r = 514.17
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1530-efi1.jpg
  • a = 9.1140 (2) Å
  • b = 10.0027 (2) Å
  • c = 14.5066 (4) Å
  • α = 100.925 (1)°
  • β = 103.106 (1)°
  • γ = 110.778 (1)°
  • V = 1150.13 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.13 mm−1
  • T = 100.0 (1) K
  • 0.46 × 0.42 × 0.17 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.623, T max = 0.830
  • 18268 measured reflections
  • 5259 independent reflections
  • 5141 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.017
  • wR(F 2) = 0.049
  • S = 1.08
  • 5259 reflections
  • 282 parameters
  • H-atom parameters constrained
  • Δρmax = 0.53 e Å−3
  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808036337/kp2195sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036337/kp2195Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Malaysian Government and Universiti Sains Malaysia for the RU research grant 101/PKIMIA/815002 and facilities. HKF and RK thanks the Malaysian Government and Universiti sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Triorganotin(IV) complexes are well known for their biological properties as well as industrial applications (Willem et al., 1997; Novelli et al., 1999; Gielen et al., 2000; Tian et al., 2005). Generally, triphenyltin(IV) carboxylate complexes are commonly found as monomeric structures with four-coordinated distorted tetrahedral or five-coordinated trigonal bipyramid geometries (Baul et al., 2001; Yeap & Teoh, 2003; Win et al., 2007b). In a recent study, the coordination geometry of (3,5-dinitrobenzoato)triphenyltin(IV) is found to be distorted tetrahedral due to the long range interaction of the carboxylate anion coordinated to the Sn moiety in an isobidentate fashion (Win et al., 2006). In addition, triphenyltin(IV) carboxylates are also able to form polymeric structures (Tian et al., 2005; Win et al., 2007a). In the polymeric system, the carboxylate anions act as bridging bidentate ligands in the bonding to the neighbouring tin(IV) resulting in a polymeric structure with the tin atom exhibiting trigonal bipyramid geometry as shown in the complex, catena-poly[[triphenyltin(IV)–2,4-dinitrobenzoato] (Win et al., 2007a). Based on the crystallographic structural study, the title complex [3-(dimethylamino)benzoato]triphenyltin(IV) has a monomeric four-coordinated distorted tetrahedral structure which is similar to that found for [4-(diethylamino)benzoato-κO]triphenyltin(IV) (Win et al., 2007b).

The bond lengths (Allen et al., 1987) and angles in the molecule (I, Fig. 1, Table 1) are within normal ranges. The Sn atom is coordinated by the three phenyl groups and a carboxylate anion in a distorted tetrahedral geometry. An intramolecular hydrogen bond C—H···O forms a seven-membered ring, characterized as S(7) motif (Bernstein et al., 1995). The dihedral angles between the phenyl-carboxylate group and the other three phenyl rings are 76.94 (8), 66.82 (8), and 42.34 (9)°, respectively. The crystal structure (Fig. 2), is further stabilized by intermolecular C—H···π (x 2) (Table 2) interactions.

Experimental

The complex [3-(dimethylamino)benzoato]triphenyltin(IV) was obtained by heating under reflux a 1:1 molar mixture of triphenyltin(IV) hydroxide (1.10 g, 3 mmol) and 3-(dimethylamino)benzoic acid (0.50 g, 3 mmol) in acetonitrile (50 ml) for an hour. The clear brown solution was isolated by filtration and kept in a bottle. After eight days, brown crystals (1.01 g, 65.7% yield) were collected. Melting point: 413.2–414.5 K. Analysis found for C27H25NO2Sn: C, 63.05; H, 4.91; N, 2.67; Sn, 23.00%. Calculated found for C27H25NO2Sn: C, 63.07; H, 4.90; N, 2.72; Sn, 23.08%. FTIR as KBr disc (cm-1): υ (C—H) aromatic 3065, 3051, 3026; υ (C—H) saturated 2989, 2908, 2810; υ (COO)as 1625, υ (COO)s 1322, υ (C—N) 1227, υ (Sn—O) 445. 1H-NMR: δ: phenyl protons 7.42–7.49 (9H, m); 7.79–7.81 (6H, m); benzene 6.86–6.88 (1H, dd); 7.24–7.28 (1H, t); 7.51–7.53 (2H, d); N-(CH3)2 2.95 (6H, s) p.p.m.. 13C-NMR: δ: phenyl carbons Cipso 139.01 (648.9 Hz), Cortho 137.36 (47.9 Hz), Cmeta 129.31 (63.2 Hz), Cpara 130.28; benzene 114.84, 117.18, 119.31, 129.57, 134.59, 150.85; N-(CH3)2 41.04; COO 174.05 p.p.m.. 119Sn-NMR: υ: -114.19 p.p.m..

Refinement

All of the hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å for aromatic H and 0.96 Å for methyl H atoms. A rotating group model was used for the methyl groups.

Figures

Fig. 1.
The molecular structure of the title compound with atom lables and the 50% probability ellipsoids for non-H atoms. Intramolecular hydrogen bonds is shown as dashed lines.
Fig. 2.
The crystal structure of (I), viewed down the b-axis. Intermolecular C—H···π interactions were shown as dashed lines.

Crystal data

[Sn(C6H5)3(C9H10NO2)]Z = 2
Mr = 514.17F000 = 520
Triclinic, P1Dx = 1.485 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 9.1140 (2) ÅCell parameters from 9986 reflections
b = 10.0027 (2) Åθ = 2.5–31.2º
c = 14.5066 (4) ŵ = 1.13 mm1
α = 100.925 (1)ºT = 100.0 (1) K
β = 103.106 (1)ºBlock, colourless
γ = 110.778 (1)º0.46 × 0.42 × 0.17 mm
V = 1150.13 (5) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer5259 independent reflections
Radiation source: fine-focus sealed tube5141 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.017
T = 100.0(1) Kθmax = 27.5º
[var phi] and ω scansθmin = 2.3º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −11→11
Tmin = 0.623, Tmax = 0.830k = −12→12
18268 measured reflectionsl = −18→18

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.049  w = 1/[σ2(Fo2) + (0.0269P)2 + 0.592P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
5259 reflectionsΔρmax = 0.53 e Å3
282 parametersΔρmin = −0.56 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn10.091614 (11)0.100499 (9)0.838745 (6)0.01429 (4)
O10.18084 (14)0.11930 (12)0.72088 (8)0.0197 (2)
O20.11484 (14)0.31350 (12)0.73771 (8)0.0204 (2)
N10.22892 (18)0.51484 (16)0.45101 (10)0.0254 (3)
C10.22847 (18)0.28442 (15)0.96940 (10)0.0159 (3)
C20.14887 (19)0.36829 (17)1.00604 (11)0.0207 (3)
H2A0.04000.34620.97100.025*
C30.2303 (2)0.48439 (18)1.09426 (12)0.0244 (3)
H3A0.17620.53991.11770.029*
C40.3920 (2)0.51738 (17)1.14722 (12)0.0229 (3)
H4A0.44650.59481.20640.028*
C50.4729 (2)0.43461 (18)1.11195 (12)0.0232 (3)
H5A0.58160.45701.14740.028*
C60.39153 (19)0.31856 (17)1.02389 (12)0.0205 (3)
H6A0.44590.26311.00100.025*
C7−0.16663 (18)0.04727 (16)0.79258 (10)0.0158 (3)
C8−0.23183 (19)0.14256 (16)0.75791 (11)0.0194 (3)
H8A−0.16150.23150.75160.023*
C9−0.4012 (2)0.10510 (18)0.73291 (12)0.0233 (3)
H9A−0.44350.16830.70890.028*
C10−0.5073 (2)−0.02620 (19)0.74368 (12)0.0240 (3)
H10A−0.6201−0.05010.72800.029*
C11−0.4443 (2)−0.12170 (18)0.77797 (12)0.0230 (3)
H11A−0.5151−0.21000.78490.028*
C12−0.27509 (19)−0.08543 (17)0.80205 (11)0.0188 (3)
H12A−0.2338−0.15010.82470.023*
C130.13625 (18)−0.08981 (16)0.85493 (11)0.0164 (3)
C140.2177 (2)−0.09087 (18)0.94868 (12)0.0215 (3)
H14A0.2560−0.00661.00280.026*
C150.2422 (2)−0.21653 (19)0.96204 (12)0.0251 (3)
H15A0.2965−0.21601.02480.030*
C160.1856 (2)−0.34238 (18)0.88169 (13)0.0245 (3)
H16A0.1999−0.42710.89070.029*
C170.1073 (2)−0.34218 (17)0.78765 (13)0.0225 (3)
H17A0.0713−0.42600.73360.027*
C180.08268 (18)−0.21649 (17)0.77429 (11)0.0193 (3)
H18A0.0302−0.21690.71120.023*
C190.16464 (18)0.23129 (16)0.69218 (11)0.0168 (3)
C200.20934 (18)0.25094 (16)0.60128 (10)0.0172 (3)
C210.20685 (18)0.37521 (16)0.57167 (11)0.0184 (3)
H21A0.18140.44430.60980.022*
C220.24224 (19)0.39733 (17)0.48506 (11)0.0199 (3)
C230.2867 (2)0.29256 (19)0.43204 (11)0.0239 (3)
H23A0.31530.30640.37580.029*
C240.2888 (2)0.16944 (19)0.46203 (12)0.0246 (3)
H24A0.31710.10140.42510.030*
C250.24929 (19)0.14608 (17)0.54641 (11)0.0207 (3)
H25A0.24940.06270.56590.025*
C260.2998 (2)0.5495 (2)0.37333 (13)0.0306 (4)
H26A0.24770.46360.31570.046*
H26B0.41660.57550.39640.046*
H26C0.28170.63210.35680.046*
C270.2286 (2)0.64104 (19)0.52007 (14)0.0318 (4)
H27A0.13720.60630.54490.048*
H27B0.21770.71270.48650.048*
H27C0.33050.68730.57430.048*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn10.01477 (6)0.01395 (6)0.01457 (6)0.00679 (4)0.00447 (4)0.00385 (4)
O10.0237 (5)0.0211 (5)0.0189 (5)0.0116 (4)0.0093 (4)0.0091 (4)
O20.0243 (6)0.0207 (5)0.0194 (5)0.0105 (4)0.0108 (4)0.0065 (4)
N10.0309 (7)0.0256 (7)0.0197 (6)0.0100 (6)0.0072 (6)0.0110 (5)
C10.0177 (7)0.0146 (6)0.0149 (6)0.0058 (5)0.0057 (5)0.0047 (5)
C20.0187 (7)0.0234 (7)0.0200 (7)0.0105 (6)0.0043 (6)0.0057 (6)
C30.0273 (8)0.0245 (8)0.0235 (8)0.0143 (7)0.0097 (7)0.0029 (6)
C40.0250 (8)0.0190 (7)0.0189 (7)0.0055 (6)0.0057 (6)0.0018 (6)
C50.0176 (7)0.0235 (7)0.0231 (8)0.0060 (6)0.0035 (6)0.0042 (6)
C60.0180 (7)0.0206 (7)0.0231 (7)0.0093 (6)0.0067 (6)0.0041 (6)
C70.0155 (6)0.0180 (6)0.0125 (6)0.0076 (5)0.0041 (5)0.0005 (5)
C80.0193 (7)0.0170 (6)0.0205 (7)0.0079 (6)0.0059 (6)0.0028 (5)
C90.0210 (7)0.0223 (7)0.0268 (8)0.0122 (6)0.0050 (6)0.0045 (6)
C100.0162 (7)0.0289 (8)0.0228 (8)0.0082 (6)0.0055 (6)0.0023 (6)
C110.0200 (7)0.0239 (7)0.0205 (7)0.0044 (6)0.0067 (6)0.0054 (6)
C120.0203 (7)0.0198 (7)0.0149 (7)0.0077 (6)0.0045 (6)0.0042 (5)
C130.0151 (6)0.0169 (6)0.0198 (7)0.0076 (5)0.0072 (5)0.0072 (5)
C140.0257 (8)0.0234 (7)0.0180 (7)0.0120 (6)0.0084 (6)0.0064 (6)
C150.0289 (8)0.0341 (9)0.0236 (8)0.0196 (7)0.0119 (7)0.0163 (7)
C160.0256 (8)0.0245 (8)0.0366 (9)0.0162 (6)0.0178 (7)0.0167 (7)
C170.0217 (7)0.0175 (7)0.0296 (8)0.0088 (6)0.0115 (6)0.0047 (6)
C180.0175 (7)0.0195 (7)0.0192 (7)0.0073 (6)0.0045 (6)0.0050 (6)
C190.0147 (6)0.0174 (6)0.0152 (6)0.0048 (5)0.0031 (5)0.0041 (5)
C200.0161 (7)0.0199 (7)0.0135 (6)0.0063 (5)0.0035 (5)0.0041 (5)
C210.0186 (7)0.0191 (7)0.0158 (7)0.0075 (5)0.0044 (5)0.0038 (5)
C220.0183 (7)0.0223 (7)0.0146 (7)0.0053 (6)0.0022 (5)0.0055 (6)
C230.0256 (8)0.0325 (8)0.0127 (7)0.0114 (7)0.0068 (6)0.0056 (6)
C240.0280 (8)0.0300 (8)0.0156 (7)0.0150 (7)0.0065 (6)0.0009 (6)
C250.0228 (7)0.0211 (7)0.0170 (7)0.0101 (6)0.0043 (6)0.0035 (6)
C260.0266 (8)0.0360 (9)0.0241 (8)0.0052 (7)0.0054 (7)0.0164 (7)
C270.0408 (10)0.0243 (8)0.0311 (9)0.0139 (7)0.0091 (8)0.0125 (7)

Geometric parameters (Å, °)

Sn1—O12.0649 (11)C12—H12A0.9300
Sn1—C12.1239 (15)C13—C181.397 (2)
Sn1—C132.1260 (14)C13—C141.398 (2)
Sn1—C72.1290 (14)C14—C151.393 (2)
O1—C191.3101 (17)C14—H14A0.9300
O2—C191.2303 (19)C15—C161.385 (2)
N1—C221.391 (2)C15—H15A0.9300
N1—C271.457 (2)C16—C171.389 (2)
N1—C261.458 (2)C16—H16A0.9300
C1—C21.397 (2)C17—C181.393 (2)
C1—C61.398 (2)C17—H17A0.9300
C2—C31.390 (2)C18—H18A0.9300
C2—H2A0.9300C19—C201.493 (2)
C3—C41.384 (2)C20—C211.396 (2)
C3—H3A0.9300C20—C251.397 (2)
C4—C51.391 (2)C21—C221.404 (2)
C4—H4A0.9300C21—H21A0.9300
C5—C61.388 (2)C22—C231.411 (2)
C5—H5A0.9300C23—C241.386 (2)
C6—H6A0.9300C23—H23A0.9300
C7—C121.399 (2)C24—C251.390 (2)
C7—C81.401 (2)C24—H24A0.9300
C8—C91.393 (2)C25—H25A0.9300
C8—H8A0.9300C26—H26A0.9600
C9—C101.389 (2)C26—H26B0.9600
C9—H9A0.9300C26—H26C0.9600
C10—C111.389 (2)C27—H27A0.9600
C10—H10A0.9300C27—H27B0.9600
C11—C121.394 (2)C27—H27C0.9600
C11—H11A0.9300
O1—Sn1—C1114.69 (5)C15—C14—C13120.83 (15)
O1—Sn1—C1395.46 (5)C15—C14—H14A119.6
C1—Sn1—C13110.92 (6)C13—C14—H14A119.6
O1—Sn1—C7109.89 (5)C16—C15—C14119.87 (15)
C1—Sn1—C7113.28 (6)C16—C15—H15A120.1
C13—Sn1—C7111.31 (5)C14—C15—H15A120.1
C19—O1—Sn1109.13 (9)C15—C16—C17120.07 (14)
C22—N1—C27118.52 (13)C15—C16—H16A120.0
C22—N1—C26118.12 (15)C17—C16—H16A120.0
C27—N1—C26115.85 (14)C16—C17—C18120.06 (15)
C2—C1—C6118.61 (14)C16—C17—H17A120.0
C2—C1—Sn1118.67 (11)C18—C17—H17A120.0
C6—C1—Sn1122.57 (11)C17—C18—C13120.51 (14)
C3—C2—C1120.82 (14)C17—C18—H18A119.7
C3—C2—H2A119.6C13—C18—H18A119.7
C1—C2—H2A119.6O2—C19—O1121.43 (13)
C4—C3—C2119.94 (15)O2—C19—C20122.89 (13)
C4—C3—H3A120.0O1—C19—C20115.68 (13)
C2—C3—H3A120.0C21—C20—C25121.04 (14)
C3—C4—C5119.97 (15)C21—C20—C19118.15 (13)
C3—C4—H4A120.0C25—C20—C19120.80 (13)
C5—C4—H4A120.0C20—C21—C22120.90 (14)
C6—C5—C4120.12 (15)C20—C21—H21A119.6
C6—C5—H5A119.9C22—C21—H21A119.6
C4—C5—H5A119.9N1—C22—C21121.46 (15)
C5—C6—C1120.54 (14)N1—C22—C23121.24 (14)
C5—C6—H6A119.7C21—C22—C23117.27 (14)
C1—C6—H6A119.7C24—C23—C22121.36 (14)
C12—C7—C8118.59 (13)C24—C23—H23A119.3
C12—C7—Sn1118.36 (10)C22—C23—H23A119.3
C8—C7—Sn1122.97 (11)C23—C24—C25121.01 (15)
C9—C8—C7120.51 (14)C23—C24—H24A119.5
C9—C8—H8A119.7C25—C24—H24A119.5
C7—C8—H8A119.7C24—C25—C20118.36 (14)
C10—C9—C8120.31 (15)C24—C25—H25A120.8
C10—C9—H9A119.8C20—C25—H25A120.8
C8—C9—H9A119.8N1—C26—H26A109.5
C9—C10—C11119.76 (15)N1—C26—H26B109.5
C9—C10—H10A120.1H26A—C26—H26B109.5
C11—C10—H10A120.1N1—C26—H26C109.5
C10—C11—C12120.11 (15)H26A—C26—H26C109.5
C10—C11—H11A119.9H26B—C26—H26C109.5
C12—C11—H11A119.9N1—C27—H27A109.5
C11—C12—C7120.71 (14)N1—C27—H27B109.5
C11—C12—H12A119.6H27A—C27—H27B109.5
C7—C12—H12A119.6N1—C27—H27C109.5
C18—C13—C14118.64 (13)H27A—C27—H27C109.5
C18—C13—Sn1121.68 (11)H27B—C27—H27C109.5
C14—C13—Sn1119.66 (11)
C1—Sn1—O1—C19−65.43 (10)C7—Sn1—C13—C1863.64 (13)
C13—Sn1—O1—C19178.55 (10)O1—Sn1—C13—C14131.33 (12)
C7—Sn1—O1—C1963.54 (10)C1—Sn1—C13—C1412.27 (13)
O1—Sn1—C1—C2118.11 (11)C7—Sn1—C13—C14−114.83 (12)
C13—Sn1—C1—C2−135.17 (11)C18—C13—C14—C15−1.3 (2)
C7—Sn1—C1—C2−9.16 (13)Sn1—C13—C14—C15177.23 (12)
O1—Sn1—C1—C6−66.39 (13)C13—C14—C15—C160.1 (2)
C13—Sn1—C1—C640.33 (13)C14—C15—C16—C171.2 (2)
C7—Sn1—C1—C6166.35 (11)C15—C16—C17—C18−1.3 (2)
C6—C1—C2—C30.7 (2)C16—C17—C18—C130.0 (2)
Sn1—C1—C2—C3176.37 (12)C14—C13—C18—C171.3 (2)
C1—C2—C3—C4−0.4 (2)Sn1—C13—C18—C17−177.23 (11)
C2—C3—C4—C50.2 (2)Sn1—O1—C19—O25.06 (17)
C3—C4—C5—C6−0.2 (2)Sn1—O1—C19—C20−174.58 (10)
C4—C5—C6—C10.5 (2)O2—C19—C20—C215.3 (2)
C2—C1—C6—C5−0.7 (2)O1—C19—C20—C21−175.11 (13)
Sn1—C1—C6—C5−176.25 (11)O2—C19—C20—C25−173.49 (14)
O1—Sn1—C7—C12120.58 (11)O1—C19—C20—C256.1 (2)
C1—Sn1—C7—C12−109.69 (11)C25—C20—C21—C220.9 (2)
C13—Sn1—C7—C1216.12 (13)C19—C20—C21—C22−177.86 (13)
O1—Sn1—C7—C8−62.74 (13)C27—N1—C22—C2118.9 (2)
C1—Sn1—C7—C867.00 (13)C26—N1—C22—C21167.49 (15)
C13—Sn1—C7—C8−167.20 (12)C27—N1—C22—C23−163.14 (16)
C12—C7—C8—C9−0.4 (2)C26—N1—C22—C23−14.6 (2)
Sn1—C7—C8—C9−177.08 (12)C20—C21—C22—N1175.44 (14)
C7—C8—C9—C101.1 (2)C20—C21—C22—C23−2.5 (2)
C8—C9—C10—C11−1.1 (2)N1—C22—C23—C24−175.42 (15)
C9—C10—C11—C120.4 (2)C21—C22—C23—C242.6 (2)
C10—C11—C12—C70.3 (2)C22—C23—C24—C25−0.9 (3)
C8—C7—C12—C11−0.3 (2)C23—C24—C25—C20−0.8 (2)
Sn1—C7—C12—C11176.53 (11)C21—C20—C25—C240.9 (2)
O1—Sn1—C13—C18−50.20 (12)C19—C20—C25—C24179.56 (14)
C1—Sn1—C13—C18−169.26 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C8—H8A···O20.932.433.126 (2)132
C24—H24A···Cg1i0.932.883.6772 (19)144
C26—H26B···Cg2ii0.962.743.672 (2)164

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2195).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Baul, T. S. B., Dhar, S., Pyke, S. M., Tiekink, E. R. T., Rivarola, E., Butcher, R. & Smith, F. E. (2001). J. Organomet. Chem.633, 7–17.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Gielen, M., Biesemans, M., Vos, D. d. & Willem, R. (2000). J. Inorg. Biochem.79, 139–145. [PubMed]
  • Novelli, F., Recine, M., Sparatore, F. & Juliano, C. (1999). Farmaco, 54, 237–241. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Tian, L., Sun, Y., Li, H., Zheng, X., Cheng, Y., Liu, X. & Qian, B. (2005). J. Inorg. Biochem.99, 1646–1652. [PubMed]
  • Willem, R., Bunhdid, A., Mahieu, B., Ghys, L., Biesemans, M., Tiekink, E. R. T., Vos, D. d. & Gielen, M. (1997). J. Organomet. Chem.531, 151–158.
  • Win, Y. F., Guan, T. S., Ismail, N. L. & Yamin, B. M. (2006). Acta Cryst. E62, m3146–m3148.
  • Win, Y. F., Teoh, S.-G., Ng, S.-L., Fun, H.-K. & Ahmad, S. (2007a). Acta Cryst. E63, m2220–m2221.
  • Win, Y. F., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Zakaria, L. (2007b). Acta Cryst. E63, m323–m325.
  • Yeap, L.-L. & Teoh, S. G. (2003). J. Coord. Chem.56, 701–708.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography