PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): m1363.
Published online 2008 October 4. doi:  10.1107/S1600536808031589
PMCID: PMC2959789

Bis(acetyl­acetonato-κ2 O,O′)(methanol-κO)(thio­cyanato-κN)manganese(III)

Abstract

In the title complex, [Mn(C5H7O2)2(NCS)(CH4O)], the MnIII atom has a slightly distorted octa­hedral coordination formed by five O atoms and one N atom. The equatorial positions are occupied by four O atoms of two acetyl­acetonate ligands, while the axial positions are occupied by the N atom of the thio­cyanate anion and the O atom of the methanol mol­ecule. In the crystal structure, complex mol­ecules are linked by an inter­molecular O—H(...)S hydrogen bond, forming a chain running along [101].

Related literature

For the synthesis, see: Stults et al. (1975 [triangle]). For related structures, see: Stults et al. (1979 [triangle]); Swarnabala et al. (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1363-scheme1.jpg

Experimental

Crystal data

  • [Mn(C5H7O2)2(NCS)(CH4O)]
  • M r = 343.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1363-efi1.jpg
  • a = 7.4795 (13) Å
  • b = 12.420 (2) Å
  • c = 17.586 (3) Å
  • β = 98.673 (4)°
  • V = 1614.9 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.96 mm−1
  • T = 293 (2) K
  • 0.21 × 0.19 × 0.15 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.824, T max = 0.869
  • 7925 measured reflections
  • 2830 independent reflections
  • 1276 reflections with I > 2σ(I)
  • R int = 0.112

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.148
  • S = 0.91
  • 2830 reflections
  • 189 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2; data reduction: SAINT-Plus (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808031589/is2333sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031589/is2333Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Octahedral complexes of high-spin MnIII are good examples for investigating the Jahn-Teller distortions, because their geometry are always distorted from the ideal octahedron to the distorted one by the axial ligands. Here, we report the structure of an octahedral MnIII complex, whose synthesis has been reported early (Stults et al., 1975).

The molecular structure of the title complex is shown in Figure 1. The MnIII atom is six coordinated by five O atoms and one N atom. The geometry can be described as a distorted octahedron. Four equational positions are occupied by four O atoms coming from two acetylacetonate ligands with the average Mn—O bond length 1.909 Å, which is in agreement well with the corresponding distance in [Mn(acac)2(OH2)2]ClO4].2H2O. (Swarnabala et al., 1994). One SCN- ion and one methanol molecule are coordinated to the MnIII atom with trans positions, so that forming an octahedral geometry. The distance of Mn—Omethanol [2.289 (5) Å] is obviously longer than the bond lengths of Mn—Oacetylacetonate. The bond length of Mn—NSCN is 2.187 (6) Å, which is also consistent with that found in [Mn(acac)2(SCN)] (Stults et al., 1979). In the crystal structure, a molecular chain along the [101] direction is formed by an intermolecular H-bond between the O atom of the methanol molecule and the S atom of the SCN- ion (Table 1).

Experimental

The title complex was synthesized according to the literature method (Stults et al. 1975). The single crystals suitable for X-ray diffraction were grown from a methanol solution after the solvent was partial evaporated. Anal. Calcd for C12H18MnNO5S: C 41.99, H 5.29, N 4.08; found: C 42.04, H 5.26, N, 4.11.

Refinement

The O-bound H atom of the methanol molecule was located in a difference Fourier map and its coordinates were refined, with Uiso(H) = 1.5Ueq(O). The H atoms bound to C atoms were placed geometrically (C—H = 0.93–0.96 Å) and were refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.
A view of the title complex with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted.

Crystal data

[Mn(C5H7O2)2(NCS)(CH4O)]F(000) = 712
Mr = 343.27Dx = 1.412 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ynCell parameters from 1347 reflections
a = 7.4795 (13) Åθ = 2.8?–16.2°
b = 12.420 (2) ŵ = 0.96 mm1
c = 17.586 (3) ÅT = 293 K
β = 98.673 (4)°Block, brown
V = 1614.9 (5) Å30.21 × 0.19 × 0.15 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer2830 independent reflections
Radiation source: fine-focus sealed tube1276 reflections with I > 2σ(I)
graphiteRint = 0.112
[var phi] and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −8→8
Tmin = 0.824, Tmax = 0.869k = −14→14
7925 measured reflectionsl = −16→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.148w = 1/[σ2(Fo2) + (0.0541P)2] where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max < 0.001
2830 reflectionsΔρmax = 0.33 e Å3
189 parametersΔρmin = −0.33 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn0.86466 (12)0.33696 (7)0.64488 (5)0.0398 (3)
S11.1860 (3)0.34036 (15)0.90976 (10)0.0749 (7)
O11.0806 (5)0.3054 (3)0.6035 (2)0.0504 (12)
O20.7813 (5)0.1923 (3)0.6275 (2)0.0446 (11)
O30.6418 (5)0.3674 (3)0.6806 (2)0.0458 (11)
O40.9347 (5)0.4844 (3)0.6515 (2)0.0485 (12)
O50.7201 (7)0.3709 (4)0.5230 (3)0.0682 (16)
H5A0.701 (11)0.325 (6)0.491 (4)0.102*
C11.0772 (9)0.3201 (5)0.8239 (4)0.0455 (17)
C20.7403 (12)0.4605 (6)0.4764 (4)0.100 (3)
H2A0.78480.52050.50820.150*
H2B0.62530.47880.44710.150*
H2C0.82450.44370.44200.150*
C31.3234 (9)0.2126 (6)0.5642 (5)0.084 (3)
H3A1.31760.24550.51440.126*
H3B1.36520.13980.56200.126*
H3C1.40550.25240.60110.126*
C41.1395 (9)0.2130 (6)0.5877 (4)0.0491 (17)
C51.0421 (9)0.1195 (5)0.5885 (4)0.0537 (19)
H51.09770.05590.57680.064*
C60.8682 (10)0.1122 (5)0.6054 (3)0.0472 (18)
C70.7645 (9)0.0081 (4)0.5966 (4)0.061 (2)
H7A0.7050−0.00290.64070.091*
H7B0.8463−0.05040.59240.091*
H7C0.67580.01100.55110.091*
C80.4019 (8)0.4572 (5)0.7255 (4)0.058 (2)
H8A0.31250.43240.68420.088*
H8B0.37040.52800.74080.088*
H8C0.40670.40890.76840.088*
C90.5827 (8)0.4605 (5)0.6990 (3)0.0415 (16)
C100.6804 (9)0.5539 (5)0.6967 (4)0.0531 (19)
H100.62810.61680.71180.064*
C110.8462 (10)0.5633 (5)0.6743 (4)0.0510 (18)
C120.9380 (10)0.6708 (5)0.6760 (5)0.092 (3)
H12A1.04900.66840.71140.138*
H12B0.86030.72500.69220.138*
H12C0.96360.68800.62550.138*
N10.9996 (8)0.3080 (5)0.7624 (3)0.0617 (17)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn0.0393 (6)0.0339 (5)0.0471 (6)−0.0035 (5)0.0093 (4)−0.0032 (5)
S10.1019 (17)0.0683 (13)0.0490 (12)−0.0013 (13)−0.0060 (11)0.0010 (11)
O10.043 (3)0.046 (3)0.065 (3)−0.007 (2)0.017 (2)−0.012 (2)
O20.043 (3)0.035 (2)0.055 (3)−0.003 (2)0.005 (2)−0.004 (2)
O30.041 (3)0.041 (2)0.057 (3)−0.001 (2)0.013 (2)−0.003 (2)
O40.052 (3)0.034 (2)0.063 (3)−0.003 (2)0.016 (2)−0.005 (2)
O50.090 (4)0.069 (4)0.043 (3)−0.006 (3)0.001 (3)0.000 (3)
C10.041 (4)0.042 (4)0.056 (5)−0.002 (3)0.015 (4)0.006 (4)
C20.135 (8)0.097 (7)0.061 (6)−0.012 (6)−0.003 (5)0.024 (5)
C30.052 (5)0.096 (6)0.108 (7)0.002 (4)0.029 (5)−0.041 (5)
C40.045 (5)0.057 (4)0.044 (4)0.005 (4)0.001 (3)−0.013 (4)
C50.049 (5)0.040 (4)0.073 (5)0.008 (4)0.011 (4)−0.010 (4)
C60.064 (5)0.042 (4)0.034 (4)−0.002 (4)0.001 (4)−0.007 (3)
C70.076 (5)0.038 (4)0.066 (5)−0.009 (4)0.004 (4)−0.007 (4)
C80.048 (5)0.072 (5)0.059 (5)0.001 (4)0.022 (4)−0.014 (4)
C90.043 (4)0.048 (4)0.031 (4)0.005 (3)0.001 (3)−0.006 (3)
C100.073 (6)0.036 (4)0.055 (5)0.001 (4)0.026 (4)−0.011 (3)
C110.063 (5)0.042 (4)0.051 (5)−0.010 (4)0.019 (4)−0.001 (4)
C120.109 (7)0.039 (4)0.140 (8)−0.012 (5)0.061 (6)−0.015 (5)
N10.062 (4)0.067 (4)0.054 (4)−0.015 (3)0.001 (3)0.003 (3)

Geometric parameters (Å, °)

Mn—O41.903 (4)C3—H3C0.9600
Mn—O21.911 (4)C4—C51.372 (8)
Mn—O31.906 (4)C5—C61.380 (8)
Mn—O11.910 (4)C5—H50.9300
Mn—N12.189 (6)C6—C71.505 (8)
Mn—O52.289 (5)C7—H7A0.9600
S1—C11.623 (8)C7—H7B0.9600
O1—C41.275 (6)C7—H7C0.9600
O2—C61.280 (7)C8—C91.495 (8)
O3—C91.296 (6)C8—H8A0.9600
O4—C111.281 (7)C8—H8B0.9600
O5—C21.405 (8)C8—H8C0.9600
O5—H5A0.80 (7)C9—C101.375 (8)
C1—N11.157 (7)C10—C111.361 (8)
C2—H2A0.9600C10—H100.9300
C2—H2B0.9600C11—C121.501 (8)
C2—H2C0.9600C12—H12A0.9600
C3—C41.494 (8)C12—H12B0.9600
C3—H3A0.9600C12—H12C0.9600
C3—H3B0.9600
O4—Mn—O2173.85 (19)O1—C4—C5123.9 (6)
O4—Mn—O392.02 (17)O1—C4—C3115.2 (6)
O2—Mn—O387.66 (16)C5—C4—C3120.8 (6)
O4—Mn—O188.83 (17)C4—C5—C6125.2 (6)
O2—Mn—O191.17 (17)C4—C5—H5117.4
O3—Mn—O1176.83 (18)C6—C5—H5117.4
O4—Mn—N191.0 (2)O2—C6—C5123.6 (6)
O2—Mn—N195.16 (19)O2—C6—C7114.9 (6)
O3—Mn—N191.32 (19)C5—C6—C7121.5 (6)
O1—Mn—N191.7 (2)C6—C7—H7A109.5
O4—Mn—O588.09 (17)C6—C7—H7B109.5
O2—Mn—O585.76 (18)H7A—C7—H7B109.5
O3—Mn—O587.65 (18)C6—C7—H7C109.5
O1—Mn—O589.33 (18)H7A—C7—H7C109.5
N1—Mn—O5178.6 (2)H7B—C7—H7C109.5
C4—O1—Mn127.4 (4)C9—C8—H8A109.5
C6—O2—Mn127.6 (4)C9—C8—H8B109.5
C9—O3—Mn127.4 (4)H8A—C8—H8B109.5
C11—O4—Mn127.2 (4)C9—C8—H8C109.5
C2—O5—Mn128.0 (4)H8A—C8—H8C109.5
C2—O5—H5A100 (6)H8B—C8—H8C109.5
Mn—O5—H5A123 (6)O3—C9—C10122.8 (6)
N1—C1—S1178.5 (7)O3—C9—C8114.3 (5)
O5—C2—H2A109.5C10—C9—C8122.9 (6)
H5A—C2—H2A136.0C11—C10—C9126.3 (6)
O5—C2—H2B109.5C11—C10—H10116.8
H5A—C2—H2B98.6C9—C10—H10116.8
H2A—C2—H2B109.5O4—C11—C10124.2 (6)
O5—C2—H2C109.5O4—C11—C12115.5 (6)
H5A—C2—H2C91.3C10—C11—C12120.3 (6)
H2A—C2—H2C109.5C11—C12—H12A109.5
H2B—C2—H2C109.5C11—C12—H12B109.5
C4—C3—H3A109.5H12A—C12—H12B109.5
C4—C3—H3B109.5C11—C12—H12C109.5
H3A—C3—H3B109.5H12A—C12—H12C109.5
C4—C3—H3C109.5H12B—C12—H12C109.5
H3A—C3—H3C109.5C1—N1—Mn162.9 (6)
H3B—C3—H3C109.5
O4—Mn—O1—C4174.8 (5)Mn—O1—C4—C59.1 (9)
O2—Mn—O1—C4−11.4 (5)Mn—O1—C4—C3−173.5 (4)
N1—Mn—O1—C483.8 (5)O1—C4—C5—C60.8 (11)
O5—Mn—O1—C4−97.1 (5)C3—C4—C5—C6−176.4 (6)
O3—Mn—O2—C6−175.2 (5)Mn—O2—C6—C5−1.7 (8)
O1—Mn—O2—C67.7 (5)Mn—O2—C6—C7−179.7 (4)
N1—Mn—O2—C6−84.2 (5)C4—C5—C6—O2−4.7 (10)
O5—Mn—O2—C696.9 (5)C4—C5—C6—C7173.2 (6)
O4—Mn—O3—C90.7 (5)Mn—O3—C9—C10−1.7 (8)
O2—Mn—O3—C9−173.2 (5)Mn—O3—C9—C8−179.9 (3)
N1—Mn—O3—C991.7 (5)O3—C9—C10—C111.3 (10)
O5—Mn—O3—C9−87.3 (5)C8—C9—C10—C11179.4 (6)
O3—Mn—O4—C110.8 (5)Mn—O4—C11—C10−1.3 (9)
O1—Mn—O4—C11177.8 (5)Mn—O4—C11—C12177.7 (4)
N1—Mn—O4—C11−90.5 (5)C9—C10—C11—O40.3 (11)
O5—Mn—O4—C1188.4 (5)C9—C10—C11—C12−178.7 (6)
O4—Mn—O5—C215.3 (5)O4—Mn—N1—C15.2 (18)
O3—Mn—O5—C2107.5 (5)O3—Mn—N1—C1−86.9 (18)
O1—Mn—O5—C2−73.5 (5)O1—Mn—N1—C194.0 (18)
O2—Mn—O5—C2−164.7 (5)O2—Mn—N1—C1−174.6 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5A···S1i0.78 (7)2.51 (6)3.281 (4)168 (7)

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2333).

References

  • Bruker (2000). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stults, B. R., Day, R. O., Marianelli, R. S. & Day, V. W. (1975). Inorg. Chem.14, 722–730.
  • Stults, B. R., Day, R. O., Marianelli, R. S. & Day, V. W. (1979). Inorg. Chem.18, 1847–1852.
  • Swarnabala, G., Reddy, K. R., Tirunagar, J. & Rajasekharan, M. V. (1994). Transition Met. Chem.19, 506–508.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography