PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): m1469–m1470.
Published online 2008 October 31. doi:  10.1107/S1600536808034685
PMCID: PMC2959788

A one-dimensional AgI coordination polymer: catena-poly[[[[N′-(4-cyano­benzyl­idene)nicotinohydrazide]silver(I)]-μ-N′-(4-cyano­benzyl­idene)nicotino­hydrazide] trifluoro­methane­sulfonate]

Abstract

In the title compound, {[Ag(C14H10N4O)2]CF3SO3}n, the unique AgI ion is coordinated by two N atoms from two pyridine rings of two independent N′-(4-cyano­benzyl­idene)nicotinohydrazide ligands and one N atom of a carbonitrile group of a symmetry-related N′-(4-cyano­benzyl­idene)nicotino­hydrazide ligand, forming a distorted T-shaped coordination environment. One of the independent ligands acts as a bridge connecting AgI ions, forming chains along the a axis. In the crystal structure, two neighbouring anti­parallel chains are connected through N—H(...)O hydrogen bonds. In addition, there are relatively short Ag(...)O contacts of 2.723 (3) Å, which connect the chains into a three-dimensional structure.

Related literature

For a related structure, see: Niu et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1469-scheme1.jpg

Experimental

Crystal data

  • [Ag(C14H10N4O)2]CF3SO3
  • M r = 757.46
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1469-efi4.jpg
  • a = 24.966 (2) Å
  • b = 13.9529 (13) Å
  • c = 17.6976 (16) Å
  • β = 98.437 (2)°
  • V = 6098.3 (10) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.80 mm−1
  • T = 173 (2) K
  • 0.51 × 0.32 × 0.27 mm

Data collection

  • Siemens SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.685, T max = 0.813
  • 19396 measured reflections
  • 6990 independent reflections
  • 5059 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.148
  • S = 1.03
  • 6990 reflections
  • 432 parameters
  • 22 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.47 e Å−3
  • Δρmin = −0.79 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2005 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808034685/lh2709sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034685/lh2709Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to Mrs Li, Wuhan University, for her assistance with the X-ray crystallographic analysis. We also gratefully acknowledge financial support from the Natural Science Foundation of Henan Province (2008B150008) and the Science and Technology Key Task of Henan Province (0624040011).

supplementary crystallographic information

Comment

In the title compound, (I), the unique AgI ion is coordinated by two nitrogen atoms from two pyridyl rings of two different ligands (N1, N2) and one nitrogen atom from one carbonitrile group of another ligand [N8i. symmetry code: (i) x - 1/2, -y + 1/2, z + 1/2,] forming a slightly distorted T-shaped coordination enviroment (Fig. 1). The N1—Ag1—N2 bond angle is 158.96 (11), indicating these three atoms are not exactly linear. Thus, the N1—Ag1—N8i and N2—Ag1—N8i bond angles are larger than 90°. The N—Ag bond distances involving the pyridine rings are in the range of 2.190 (3)–2.207 (3) Å, which are smaller than N—Ag bond distance involving the carbonitrile group, 2.518 (3) Å. This probably indicates that nitrogen atoms of carbonitrile groups possess a weaker coordinating ability with silver than the nitrogen atoms of the pyridine rings in one ligand. In the crystal structure, half of the 4-cyanobenzylidene nicotinohydrazide molecules act as bridging ligands, the other half coordinating only in the monodentate mode. Differences in bond distances between Npyridine—Ag and Ncarbonitrile—Ag bonds can also be found in {[Ag2(1,6-Dihydro-2-methyl-6-oxo-(3,4'-bipyridine)-5-carbonitrile)3] 2(CH3OH)3(PF6)4}n (Niu et al., 2007), where the Ncarbonitrile—Ag bond distance of 2.529 (3) Å (similar to that in the title compound), is larger than the Npyridine—Ag bond distance of 2.151 (3) Å.

The ligands acting as µ2-bridging ligands coordinate through pyridine and carbonitrile nitrogen atoms. Each of these bridging ligands connects two silver atoms together by one pyridine nitrogen atom N1 and one carbonitrile nitrogen atom N8i to form a one-dimensional chain along the a axis. The separation of two neighbouring silver atoms in one chain is ca. 16 Å, which means 4-cyanobenzylidene nicotinohydrazide acts as a moderately long bridging ligand. Interestingly, the other half of all ligands act only as monodentate terminal ligands and are coordinated to silver atoms in chains only through pyridine nitrogen atoms with the carbonitrile nitrogen atoms remaining uncoordinated. Two terminal ligands connecting to two adjacent silver atoms in one chain are located in opposite directions away from the chain. Thus, these chains possess a unusual 'saw-like' structure with the terminal ligands acting like 'saw-teeth' (Fig. 2).

In the crystal structure, the CF3SO3- counteranions are connected the ligands of chains by N—H···O hydrogen bonds (Table 2). In addition, there are also N—H···O hydrogen bondings between two neighbouring antiparallel chains (Fig. 3). Furthermore, there are weak Ag···O interactions between one oxygen atom [O1] of the terminal ligand in one chain and one silver atom in the neighbouring chain with the Ag···O separation of 2.8760 (21) Å (Fig. 4). These noncovalent interactions have large contributions to the supramolecular three-dimensional framework of the compound.

Experimental

A solution of AgCF3SO3 (0.026 g, 0.1 mmol) in CH3OH (10 ml) was carefully layered on a CH3OH/CHCl3 solution (5 ml/10 ml) of 4-Cyanobenzylidene nicotinohydrazide (0.025 g, 0.1 mmol) in a straight glass tube. About ten days later, colourless single crystals suitable for X-ray analysis were obtained (yield about 35%). Elementary analysis, calculated for C29H20AgN8O5F3S: C, 45.98, H, 2.66, N, 14.79%; found: C, 46.07, H, 2.53, N, 14.70%. One very strong bonds at 1262 cm-1 in the IR spectra were assigned to CF3SO3-.

Refinement

C-bound H atoms were placed in calculated positions and refined using a riding model [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The N-bound H atoms were first introduced in calculated positions, and then thier positions and displacement parameters were refined with the N—H bond distance to 0.88 (2) Å, the distances of H29 and N4, H29 and C6 to 1.93 (2) and 1.96 (2) Å, respectively. The final difference Fourier map had a highest peak at 0.90 Å from atom Ag1 and a deepest hole at 0.76 Å from atom Ag1, but were otherwise featureless.

Figures

Fig. 1.
A view of the AgI coordination environment in the polymeric structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: ...
Fig. 2.
A space-filling diagram showing the one-dimensional chain. All counteranions and H atoms have been omitted for clarity.
Fig. 3.
A diagram showing the intermolecular hydrogen bonds indicated by dashed lines. All counteranions and H atoms not involved in hydrogen bonds have been omitted for clarity.
Fig. 4.
A diagram showing the intermolecular Ag···O interactions indicated by dashed lines. All counteranions and H atoms have been omitted for clarity.

Crystal data

[Ag(C14H10N4O)2]CF3SO3F(000) = 3040
Mr = 757.46Dx = 1.650 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5153 reflections
a = 24.966 (2) Åθ = 2.1–27.5°
b = 13.9529 (13) ŵ = 0.80 mm1
c = 17.6976 (16) ÅT = 173 K
β = 98.437 (2)°Prism, colourless
V = 6098.3 (10) Å30.51 × 0.32 × 0.27 mm
Z = 8

Data collection

Siemens SMART CCD diffractometer6990 independent reflections
Radiation source: fine-focus sealed tube5059 reflections with I > 2σ(I)
graphiteRint = 0.031
[var phi] and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −28→32
Tmin = 0.685, Tmax = 0.813k = −18→17
19396 measured reflectionsl = −22→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0766P)2 + 8.964P] where P = (Fo2 + 2Fc2)/3
6990 reflections(Δ/σ)max < 0.001
432 parametersΔρmax = 1.47 e Å3
22 restraintsΔρmin = −0.79 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ag10.177461 (13)0.31617 (2)0.21259 (2)0.05965 (14)
N10.16489 (13)0.4710 (2)0.22045 (18)0.0481 (7)
N20.19741 (12)0.17730 (19)0.16389 (17)0.0421 (6)
N30.25625 (13)0.6644 (2)0.10836 (19)0.0488 (7)
N40.29258 (12)0.7215 (2)0.07857 (19)0.0497 (7)
N50.5169 (2)0.9140 (4)−0.1204 (3)0.1027 (17)
N60.32032 (13)0.1492 (2)0.02428 (18)0.0480 (7)
N70.35916 (12)0.1432 (2)−0.02381 (18)0.0491 (7)
N80.60476 (14)0.2456 (3)−0.2154 (2)0.0662 (10)
S10.35594 (5)0.41766 (7)0.11529 (6)0.0575 (3)
O10.23222 (12)0.78306 (19)0.18438 (17)0.0603 (7)
O20.28597 (11)0.0026 (2)−0.01063 (16)0.0589 (7)
O30.33416 (17)0.3230 (2)0.1160 (2)0.0852 (11)
O40.32654 (16)0.4890 (3)0.1495 (2)0.0886 (11)
O50.37379 (17)0.4448 (2)0.04515 (19)0.0852 (11)
F10.4489 (2)0.3413 (5)0.1600 (3)0.180 (2)
F20.40950 (15)0.3851 (3)0.2507 (2)0.1073 (11)
F30.4445 (2)0.4874 (4)0.1883 (3)0.180 (2)
C10.12856 (16)0.5082 (3)0.2610 (2)0.0548 (10)
H10.10590.46580.28390.066*
C20.12275 (17)0.6049 (3)0.2707 (3)0.0611 (11)
H20.09660.62890.29980.073*
C30.15543 (18)0.6664 (3)0.2376 (3)0.0562 (10)
H30.15240.73360.24440.067*
C40.19279 (14)0.6307 (2)0.19433 (19)0.0410 (7)
C50.19597 (15)0.5322 (3)0.1878 (2)0.0452 (8)
H50.22160.50650.15850.054*
C60.22824 (15)0.6994 (2)0.1618 (2)0.0437 (8)
C70.32028 (16)0.6787 (3)0.0335 (2)0.0497 (9)
H70.31430.61260.02260.060*
C80.36060 (15)0.7304 (3)−0.0009 (2)0.0492 (9)
C90.39393 (18)0.6808 (3)−0.0440 (3)0.0629 (11)
H90.38930.6137−0.05140.075*
C100.43334 (18)0.7280 (4)−0.0756 (3)0.0657 (11)
H100.45560.6936−0.10540.079*
C110.44089 (18)0.8263 (3)−0.0643 (3)0.0610 (11)
C120.40796 (18)0.8751 (3)−0.0220 (3)0.0624 (11)
H120.41310.9420−0.01390.075*
C130.36835 (17)0.8298 (3)0.0086 (2)0.0549 (10)
H130.34550.86540.03670.066*
C140.4834 (2)0.8750 (4)−0.0962 (3)0.0731 (13)
C150.18030 (14)0.0956 (3)0.1923 (2)0.0434 (8)
H150.15560.09940.22830.052*
C160.19682 (16)0.0068 (3)0.1717 (2)0.0496 (9)
H160.1842−0.04940.19360.060*
C170.23172 (15)0.0003 (2)0.1192 (2)0.0440 (8)
H170.2436−0.06060.10420.053*
C180.24964 (13)0.0833 (2)0.08797 (19)0.0390 (7)
C190.23178 (14)0.1700 (2)0.1127 (2)0.0408 (7)
H190.24450.22730.09240.049*
C200.28677 (14)0.0743 (2)0.0289 (2)0.0421 (8)
C210.38690 (16)0.2191 (3)−0.0263 (2)0.0513 (9)
H210.37840.27390.00160.062*
C220.43167 (14)0.2241 (3)−0.0711 (2)0.0470 (8)
C230.45139 (15)0.1431 (3)−0.1041 (2)0.0496 (9)
H230.43430.0828−0.10040.059*
C240.49545 (16)0.1502 (3)−0.1419 (2)0.0516 (9)
H240.50910.0949−0.16390.062*
C250.52007 (14)0.2387 (3)−0.1478 (2)0.0481 (8)
C260.50079 (18)0.3193 (3)−0.1168 (3)0.0615 (11)
H260.51760.3796−0.12180.074*
C270.45664 (18)0.3123 (3)−0.0780 (3)0.0590 (11)
H270.44330.3678−0.05590.071*
C280.56767 (15)0.2436 (3)−0.1854 (2)0.0524 (9)
C290.4169 (2)0.4087 (4)0.1813 (4)0.0870 (16)
H280.3208 (14)0.1991 (18)0.0520 (17)0.034 (9)*
H290.2522 (16)0.6077 (15)0.088 (2)0.077 (15)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ag10.0648 (2)0.03572 (18)0.0846 (3)0.00461 (12)0.03151 (17)−0.00623 (14)
N10.0518 (17)0.0365 (16)0.0593 (18)0.0005 (13)0.0199 (14)−0.0055 (13)
N20.0429 (15)0.0342 (15)0.0533 (17)0.0026 (12)0.0204 (13)0.0006 (12)
N30.0516 (18)0.0351 (17)0.062 (2)−0.0037 (13)0.0157 (15)−0.0009 (14)
N40.0453 (17)0.0426 (17)0.0613 (19)−0.0032 (13)0.0087 (14)0.0035 (15)
N50.097 (3)0.080 (3)0.145 (5)0.001 (3)0.067 (3)0.018 (3)
N60.0516 (18)0.0436 (17)0.0556 (18)−0.0025 (14)0.0308 (14)−0.0074 (15)
N70.0481 (17)0.0516 (18)0.0530 (17)0.0022 (14)0.0257 (14)0.0003 (15)
N80.055 (2)0.083 (3)0.067 (2)−0.0100 (19)0.0293 (17)−0.003 (2)
S10.0696 (6)0.0462 (5)0.0620 (6)0.0057 (5)0.0276 (5)−0.0020 (5)
O10.0777 (19)0.0316 (13)0.0750 (19)−0.0016 (13)0.0223 (15)−0.0033 (13)
O20.0707 (18)0.0435 (15)0.0692 (18)−0.0031 (13)0.0324 (14)−0.0152 (13)
O30.116 (3)0.066 (2)0.081 (2)−0.0313 (19)0.039 (2)−0.0132 (17)
O40.107 (3)0.085 (3)0.078 (2)0.038 (2)0.029 (2)−0.0101 (19)
O50.129 (3)0.063 (2)0.073 (2)0.010 (2)0.048 (2)0.0106 (17)
F10.107 (3)0.242 (6)0.198 (5)0.086 (3)0.042 (3)0.023 (4)
F20.105 (2)0.118 (3)0.094 (2)−0.018 (2)0.0007 (19)0.033 (2)
F30.157 (4)0.179 (5)0.188 (4)−0.111 (4)−0.028 (3)0.067 (4)
C10.051 (2)0.047 (2)0.072 (3)−0.0022 (17)0.0272 (19)−0.0071 (19)
C20.061 (2)0.050 (2)0.080 (3)0.0048 (19)0.034 (2)−0.014 (2)
C30.063 (2)0.038 (2)0.073 (3)0.0095 (17)0.024 (2)−0.0100 (18)
C40.0428 (18)0.0347 (18)0.0459 (18)0.0056 (14)0.0082 (14)−0.0045 (14)
C50.0493 (19)0.0372 (18)0.052 (2)0.0074 (15)0.0164 (16)−0.0047 (15)
C60.0469 (19)0.0330 (18)0.051 (2)0.0038 (14)0.0069 (16)−0.0007 (14)
C70.048 (2)0.043 (2)0.058 (2)0.0004 (16)0.0065 (17)0.0016 (17)
C80.0431 (19)0.053 (2)0.051 (2)−0.0008 (16)0.0067 (16)0.0048 (17)
C90.060 (3)0.059 (3)0.073 (3)−0.001 (2)0.020 (2)−0.010 (2)
C100.061 (3)0.072 (3)0.069 (3)0.004 (2)0.027 (2)−0.005 (2)
C110.052 (2)0.067 (3)0.065 (3)0.0033 (19)0.012 (2)0.012 (2)
C120.066 (3)0.049 (2)0.076 (3)−0.0001 (19)0.025 (2)0.011 (2)
C130.056 (2)0.047 (2)0.064 (2)0.0069 (17)0.0162 (19)0.0032 (18)
C140.065 (3)0.070 (3)0.091 (3)0.006 (2)0.032 (3)0.012 (3)
C150.0481 (19)0.0362 (18)0.0500 (19)−0.0016 (14)0.0212 (16)−0.0007 (15)
C160.063 (2)0.0335 (18)0.057 (2)−0.0047 (16)0.0237 (18)0.0053 (16)
C170.054 (2)0.0294 (16)0.052 (2)−0.0002 (14)0.0169 (16)−0.0006 (14)
C180.0390 (17)0.0349 (17)0.0456 (18)0.0005 (13)0.0141 (14)−0.0002 (14)
C190.0425 (18)0.0305 (17)0.053 (2)−0.0001 (13)0.0196 (15)0.0028 (14)
C200.0427 (18)0.0383 (18)0.0485 (19)0.0036 (14)0.0172 (15)0.0025 (15)
C210.054 (2)0.050 (2)0.056 (2)−0.0010 (17)0.0284 (18)−0.0037 (18)
C220.0435 (19)0.051 (2)0.050 (2)−0.0004 (16)0.0188 (16)0.0042 (17)
C230.047 (2)0.047 (2)0.058 (2)−0.0052 (16)0.0204 (17)0.0013 (18)
C240.052 (2)0.051 (2)0.056 (2)0.0028 (17)0.0228 (17)0.0001 (18)
C250.0424 (19)0.059 (2)0.0463 (19)−0.0018 (16)0.0185 (15)0.0042 (17)
C260.059 (2)0.057 (3)0.076 (3)−0.0119 (19)0.033 (2)0.001 (2)
C270.060 (2)0.050 (2)0.074 (3)−0.0063 (18)0.034 (2)−0.0062 (19)
C280.047 (2)0.065 (3)0.048 (2)−0.0058 (18)0.0171 (16)−0.0006 (18)
C290.071 (3)0.080 (4)0.115 (4)−0.009 (3)0.032 (3)0.026 (3)

Geometric parameters (Å, °)

Ag1—N12.190 (3)C7—C81.444 (5)
Ag1—N22.207 (3)C7—H70.9500
Ag1—N8i2.518 (3)C8—C91.392 (6)
N1—C51.341 (5)C8—C131.407 (6)
N1—C11.341 (5)C9—C101.370 (6)
N2—C191.340 (4)C9—H90.9500
N2—C151.340 (4)C10—C111.396 (7)
N3—C61.348 (5)C10—H100.9500
N3—N41.370 (4)C11—C121.372 (6)
N3—H290.869 (14)C11—C141.442 (6)
N4—C71.278 (5)C12—C131.351 (6)
N5—C141.133 (6)C12—H120.9500
N6—C201.348 (5)C13—H130.9500
N6—N71.383 (4)C15—C161.372 (5)
N6—H280.852 (18)C15—H150.9500
N7—C211.270 (5)C16—C171.367 (5)
N8—C281.134 (5)C16—H160.9500
N8—Ag1ii2.518 (3)C17—C181.385 (5)
S1—O41.424 (3)C17—H170.9500
S1—O51.430 (3)C18—C191.382 (5)
S1—O31.429 (3)C18—C201.501 (4)
S1—C291.782 (6)C19—H190.9500
O1—C61.232 (4)C21—C221.464 (5)
O2—C201.220 (4)C21—H210.9500
F1—C291.324 (8)C22—C231.395 (6)
F2—C291.311 (6)C22—C271.392 (5)
F3—C291.292 (7)C23—C241.372 (5)
C1—C21.370 (6)C23—H230.9500
C1—H10.9500C24—C251.390 (6)
C2—C31.374 (6)C24—H240.9500
C2—H20.9500C25—C261.369 (6)
C3—C41.383 (5)C25—C281.446 (5)
C3—H30.9500C26—C271.385 (6)
C4—C51.382 (5)C26—H260.9500
C4—C61.478 (5)C27—H270.9500
C5—H50.9500
N1—Ag1—N2158.96 (11)C12—C11—C14121.0 (4)
N1—Ag1—N8i100.66 (12)C10—C11—C14119.9 (4)
N2—Ag1—N8i96.76 (12)C13—C12—C11121.3 (4)
C5—N1—C1117.6 (3)C13—C12—H12119.4
C5—N1—Ag1120.3 (2)C11—C12—H12119.4
C1—N1—Ag1122.1 (3)C12—C13—C8120.6 (4)
C19—N2—C15117.4 (3)C12—C13—H13119.7
C19—N2—Ag1122.3 (2)C8—C13—H13119.7
C15—N2—Ag1119.8 (2)N5—C14—C11179.1 (6)
C6—N3—N4120.0 (3)N2—C15—C16122.9 (3)
C6—N3—H29125.3 (15)N2—C15—H15118.5
N4—N3—H29114.6 (15)C16—C15—H15118.5
C7—N4—N3114.7 (3)C17—C16—C15119.2 (3)
C20—N6—N7119.3 (3)C17—C16—H16120.4
C20—N6—H28124 (2)C15—C16—H16120.4
N7—N6—H28117 (2)C16—C17—C18119.4 (3)
C21—N7—N6114.0 (3)C16—C17—H17120.3
C28—N8—Ag1ii158.1 (4)C18—C17—H17120.3
O4—S1—O5115.5 (2)C19—C18—C17117.8 (3)
O4—S1—O3115.0 (2)C19—C18—C20123.7 (3)
O5—S1—O3114.8 (2)C17—C18—C20118.5 (3)
O4—S1—C29102.4 (3)N2—C19—C18123.3 (3)
O5—S1—C29104.0 (3)N2—C19—H19118.3
O3—S1—C29102.7 (3)C18—C19—H19118.3
N1—C1—C2122.8 (4)O2—C20—N6124.0 (3)
N1—C1—H1118.6O2—C20—C18120.5 (3)
C2—C1—H1118.6N6—C20—C18115.5 (3)
C1—C2—C3118.7 (4)N7—C21—C22121.4 (4)
C1—C2—H2120.6N7—C21—H21119.3
C3—C2—H2120.6C22—C21—H21119.3
C2—C3—C4120.1 (3)C23—C22—C27119.3 (3)
C2—C3—H3119.9C23—C22—C21122.2 (4)
C4—C3—H3119.9C27—C22—C21118.4 (4)
C3—C4—C5117.1 (3)C24—C23—C22120.2 (4)
C3—C4—C6118.2 (3)C24—C23—H23119.9
C5—C4—C6124.6 (3)C22—C23—H23119.9
N1—C5—C4123.6 (3)C23—C24—C25119.7 (4)
N1—C5—H5118.2C23—C24—H24120.1
C4—C5—H5118.2C25—C24—H24120.1
O1—C6—N3123.1 (4)C26—C25—C24120.9 (3)
O1—C6—C4120.8 (3)C26—C25—C28120.5 (4)
N3—C6—C4116.1 (3)C24—C25—C28118.6 (4)
N4—C7—C8120.3 (4)C25—C26—C27119.5 (4)
N4—C7—H7119.9C25—C26—H26120.2
C8—C7—H7119.9C27—C26—H26120.2
C9—C8—C13118.2 (4)C26—C27—C22120.3 (4)
C9—C8—C7119.5 (4)C26—C27—H27119.8
C13—C8—C7122.3 (4)C22—C27—H27119.8
C10—C9—C8120.5 (4)N8—C28—C25178.6 (5)
C10—C9—H9119.7F3—C29—F2105.7 (6)
C8—C9—H9119.7F3—C29—F1107.3 (6)
C9—C10—C11120.2 (4)F2—C29—F1105.2 (5)
C9—C10—H10119.9F3—C29—S1113.3 (4)
C11—C10—H10119.9F2—C29—S1114.0 (4)
C12—C11—C10119.1 (4)F1—C29—S1110.8 (5)
N2—Ag1—N1—C5−34.0 (5)C19—N2—C15—C160.6 (5)
N8i—Ag1—N1—C5−179.4 (3)Ag1—N2—C15—C16−171.5 (3)
N2—Ag1—N1—C1149.7 (3)N2—C15—C16—C17−0.9 (6)
N8i—Ag1—N1—C14.4 (3)C15—C16—C17—C180.0 (6)
N1—Ag1—N2—C1927.7 (5)C16—C17—C18—C191.0 (5)
N8i—Ag1—N2—C19173.4 (3)C16—C17—C18—C20−178.4 (3)
N1—Ag1—N2—C15−160.7 (3)C15—N2—C19—C180.6 (5)
N8i—Ag1—N2—C15−14.9 (3)Ag1—N2—C19—C18172.4 (3)
C6—N3—N4—C7174.1 (3)C17—C18—C19—N2−1.4 (5)
C20—N6—N7—C21177.1 (4)C20—C18—C19—N2178.0 (3)
C5—N1—C1—C2−0.9 (6)N7—N6—C20—O2−4.8 (6)
Ag1—N1—C1—C2175.5 (3)N7—N6—C20—C18174.3 (3)
N1—C1—C2—C30.1 (7)C19—C18—C20—O2−153.1 (4)
C1—C2—C3—C41.0 (7)C17—C18—C20—O226.3 (5)
C2—C3—C4—C5−1.2 (6)C19—C18—C20—N627.7 (5)
C2—C3—C4—C6−178.1 (4)C17—C18—C20—N6−152.9 (3)
C1—N1—C5—C40.6 (6)N6—N7—C21—C22176.8 (3)
Ag1—N1—C5—C4−175.8 (3)N7—C21—C22—C23−9.6 (6)
C3—C4—C5—N10.4 (6)N7—C21—C22—C27173.2 (4)
C6—C4—C5—N1177.1 (3)C27—C22—C23—C241.0 (6)
N4—N3—C6—O12.4 (6)C21—C22—C23—C24−176.2 (4)
N4—N3—C6—C4−176.0 (3)C22—C23—C24—C25−0.6 (6)
C3—C4—C6—O114.1 (5)C23—C24—C25—C26−0.4 (6)
C5—C4—C6—O1−162.6 (4)C23—C24—C25—C28177.7 (4)
C3—C4—C6—N3−167.4 (4)C24—C25—C26—C271.0 (7)
C5—C4—C6—N315.9 (5)C28—C25—C26—C27−177.0 (4)
N3—N4—C7—C8−179.1 (3)C25—C26—C27—C22−0.6 (7)
N4—C7—C8—C9173.9 (4)C23—C22—C27—C26−0.4 (7)
N4—C7—C8—C13−4.9 (6)C21—C22—C27—C26176.9 (4)
C13—C8—C9—C100.4 (6)O4—S1—C29—F3−62.1 (6)
C7—C8—C9—C10−178.4 (4)O5—S1—C29—F358.4 (6)
C8—C9—C10—C110.7 (7)O3—S1—C29—F3178.4 (5)
C9—C10—C11—C12−0.8 (7)O4—S1—C29—F258.8 (5)
C9—C10—C11—C14178.4 (4)O5—S1—C29—F2179.4 (4)
C10—C11—C12—C13−0.3 (7)O3—S1—C29—F2−60.7 (5)
C14—C11—C12—C13−179.4 (4)O4—S1—C29—F1177.3 (4)
C11—C12—C13—C81.5 (7)O5—S1—C29—F1−62.2 (5)
C9—C8—C13—C12−1.5 (6)O3—S1—C29—F157.8 (5)
C7—C8—C13—C12177.3 (4)

Symmetry codes: (i) x−1/2, −y+1/2, z+1/2; (ii) x+1/2, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H29···O2iii0.87 (1)2.18 (2)2.999 (4)156 (4)
N6—H28···O30.85 (2)2.07 (2)2.911 (5)171 (3)

Symmetry codes: (iii) −x+1/2, −y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2709).

References

  • Brandenburg, K. (2005). DIAMOND Crystal Impact GbR. Bonn, Germany.
  • Niu, C.-Y., Wu, B.-L., Zheng, X.-F., Zhang, H.-Y., Li, Z.-J. & Hou, H.-W. (2007). Dalton Trans. pp. 5710–5713. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SAINT and SMART Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography