PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2092.
Published online 2008 October 11. doi:  10.1107/S1600536808032157
PMCID: PMC2959785

N-(4-Chloro-2-nitro­phen­yl)-N-(methyl­sulfon­yl)acetamide

Abstract

The title compound, C9H9ClN2O5S, is of inter­est as a precursor to biologically active substituted quinolines and related compounds. The structure displays inter­molecular C—H(...)O inter­actions. Each mol­ecule is linked to two adjacent neighbours via weak centrosymmetric dimer-forming inter­actions, forming chains in the [101] direction.

Related literature

For synthesis and biological evaluation of sulfur-containing heterocyclic compounds, see: Zia-ur-Rehman et al. (2005 [triangle], 2006 [triangle], 2007 [triangle], 2008 [triangle]); Wen et al. (2005 [triangle]); Zhang, Xu, Wen et al. (2006 [triangle]). For related mol­ecules, see: (Wen et al., 2006 [triangle]; Zhang, Xu, Zou et al. (2006 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2092-scheme1.jpg

Experimental

Crystal data

  • C9H9ClN2O5S
  • M r = 292.70
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2092-efi1.jpg
  • a = 9.8071 (4) Å
  • b = 9.4310 (4) Å
  • c = 13.5679 (7) Å
  • β = 105.883 (2)°
  • V = 1207.00 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.50 mm−1
  • T = 296 (2) K
  • 0.25 × 0.15 × 0.09 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.913, T max = 0.956
  • 13383 measured reflections
  • 2988 independent reflections
  • 2077 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.104
  • S = 1.02
  • 2981 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808032157/ez2142sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808032157/ez2142Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the PCSIR Laboratories Complex, Lahore, Pakistan, for provision of the necessary chemicals, and the Higher Education Commission of Pakistan for the purchase of the diffractometer.

supplementary crystallographic information

Comment

N-(Substituted phenyl)acetamides are well known for their importance as intermediates in organic synthesis. They are used as precursors for the synthesis of many heterocyclic compounds, e.g. 2,5-piperazinedione (Wen et al., 2006), (quinolin-8-yloxy)acetamide (Zhang, Xu, Wen et al., 2006) and 2,2-(1,3,4-thiadiazolyl-2,5-dithio)diacetamide (Wen et al., 2005). In the present paper, the structure of N-(4-chloro-2-nitrophenyl)-N-(methylsulfonyl)acetamide (I) has been determined as part of a research program involving the synthesis and biological evaluation of sulfur containing heterocyclic compounds (Zia-ur-Rehman et al., 2005, 2006, 2007, 2008).

In the molecule of I (Fig. 1), the bond lengths and bond angles are similar to those in related molecules (Wen et al., 2006; Zhang, Xu, Zou et al., 2006) and are within normal ranges (Allen et al., 1987). The nitro group is slightly twisted out of the plane of the benzene ring, as indicated by O1—N1—C3—C2 and O2—N1—C3—C2 torsion angles of -16.7 (3) and 160.9 (2)°, respectively. Each molecule is linked to its neighbour via a centrosymmetric head-to-tail interaction between the methyl hydrogen H9B and the carbonyl oxygen [C9—H9B···O3]. Adjacent pairs of these molecules are then linked into chains via intermolecular [C2—H5···O5] interactions along the [101] direction (Table 1 and Fig. 2).

Experimental

A mixture of N-(4-chloro-2-nitrophenyl)methane sulfonamide (2.507 g; 10.0 mmoles) and acetic anhydride (10.0 ml) was heated to reflux for half an hour and then poured over crushed ice. Resultant solids were then washed with cold water and dried under reduced pressure. Yellow crystals were obtained by slow evaporation of an ethanolic solution over a period of two days.

Refinement

H atoms bound to C were placed in geometric positions (C—H distance = 0.95 Å) using a riding model with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The asymmetric unit of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Perspective view of a portion of the crystal packing, viewed approximately down the b-axis, showing hydrogen bond interactions (dashed lines) along the [101] direction. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C9H9ClN2O5SF(000) = 600
Mr = 292.70Dx = 1.611 Mg m3
Monoclinic, P21/cMelting point: 401 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.8071 (4) ÅCell parameters from 3121 reflections
b = 9.4310 (4) Åθ = 2.7–27.2°
c = 13.5679 (7) ŵ = 0.50 mm1
β = 105.883 (2)°T = 296 K
V = 1207.00 (9) Å3Needle, light yellow
Z = 40.25 × 0.15 × 0.09 mm

Data collection

Bruker APEXII CCD area-detector diffractometer2988 independent reflections
Radiation source: fine-focus sealed tube2077 reflections with I > 2σ(I)
graphiteRint = 0.043
Detector resolution: 7.5 pixels mm-1θmax = 28.3°, θmin = 2.7°
[var phi] and ω scansh = −12→13
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)k = −12→12
Tmin = 0.913, Tmax = 0.956l = −18→17
13383 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0426P)2 + 0.5587P] where P = (Fo2 + 2Fc2)/3
2981 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.43935 (5)0.98058 (6)0.14520 (4)0.03097 (15)
Cl1−0.20712 (6)0.67766 (7)−0.00125 (6)0.0511 (2)
N20.34896 (17)0.91810 (19)0.22582 (14)0.0276 (4)
O50.34507 (18)0.96150 (18)0.04574 (13)0.0439 (4)
C40.2107 (2)0.8605 (2)0.17969 (16)0.0269 (5)
O30.52800 (17)0.97095 (19)0.36537 (13)0.0454 (4)
N10.0872 (2)1.0934 (2)0.18329 (16)0.0361 (5)
C30.0874 (2)0.9425 (2)0.15362 (17)0.0283 (5)
O1−0.0130 (2)1.1651 (2)0.13957 (18)0.0695 (7)
C1−0.0476 (2)0.7464 (3)0.07164 (19)0.0365 (5)
O40.49004 (18)1.11878 (17)0.17659 (15)0.0477 (5)
O20.1842 (2)1.1381 (2)0.25205 (18)0.0651 (6)
C50.1996 (2)0.7188 (2)0.15196 (19)0.0359 (5)
H50.28000.66180.16890.043*
C60.0708 (2)0.6607 (3)0.09955 (19)0.0401 (6)
H60.06390.56470.08330.048*
C70.4104 (2)0.9221 (2)0.33238 (17)0.0315 (5)
C2−0.0409 (2)0.8874 (2)0.09933 (18)0.0327 (5)
H2−0.12150.94410.08160.039*
C80.5815 (3)0.8637 (3)0.1615 (2)0.0501 (7)
H8A0.54630.76900.14600.075*
H8B0.63900.86790.23120.075*
H8C0.63740.88990.11630.075*
C90.3259 (3)0.8606 (3)0.39765 (19)0.0415 (6)
H9A0.22850.88870.37160.062*
H9B0.36210.89440.46660.062*
H9C0.33230.75910.39690.062*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0248 (3)0.0320 (3)0.0347 (3)0.0000 (2)0.0057 (2)0.0040 (2)
Cl10.0311 (3)0.0557 (4)0.0567 (4)−0.0129 (3)−0.0043 (3)−0.0082 (3)
N20.0209 (8)0.0327 (9)0.0269 (10)−0.0027 (7)0.0024 (7)−0.0027 (8)
O50.0386 (9)0.0575 (11)0.0322 (10)−0.0048 (8)0.0039 (8)0.0063 (8)
C40.0208 (9)0.0328 (11)0.0253 (11)−0.0021 (8)0.0032 (8)−0.0017 (9)
O30.0317 (9)0.0564 (11)0.0388 (10)−0.0073 (8)−0.0064 (8)−0.0053 (8)
N10.0334 (10)0.0337 (10)0.0424 (12)0.0039 (8)0.0123 (9)−0.0019 (9)
C30.0268 (10)0.0283 (11)0.0292 (12)−0.0009 (8)0.0066 (9)−0.0012 (9)
O10.0571 (13)0.0447 (11)0.0897 (17)0.0213 (10)−0.0088 (12)−0.0094 (11)
C10.0256 (11)0.0426 (13)0.0364 (14)−0.0069 (10)0.0002 (10)−0.0021 (10)
O40.0457 (10)0.0354 (9)0.0607 (13)−0.0111 (8)0.0124 (9)0.0025 (8)
O20.0447 (11)0.0471 (11)0.0889 (17)0.0022 (9)−0.0063 (11)−0.0287 (11)
C50.0277 (11)0.0326 (11)0.0422 (15)0.0037 (9)0.0010 (10)−0.0035 (10)
C60.0368 (13)0.0329 (12)0.0447 (15)−0.0034 (10)0.0012 (11)−0.0067 (11)
C70.0308 (11)0.0307 (11)0.0291 (13)0.0039 (9)0.0016 (10)−0.0025 (9)
C20.0202 (10)0.0403 (12)0.0356 (13)0.0008 (9)0.0043 (9)0.0024 (10)
C80.0370 (14)0.0579 (17)0.0606 (19)0.0155 (12)0.0219 (13)0.0118 (14)
C90.0489 (14)0.0445 (14)0.0309 (14)0.0029 (11)0.0104 (12)0.0004 (11)

Geometric parameters (Å, °)

S1—O41.4182 (17)C1—C21.379 (3)
S1—O51.4232 (18)C1—C61.380 (3)
S1—N21.6913 (19)C5—C61.382 (3)
S1—C81.743 (2)C5—H50.9300
Cl1—C11.732 (2)C6—H60.9300
N2—C71.406 (3)C7—C91.487 (3)
N2—C41.435 (2)C2—H20.9300
C4—C51.384 (3)C8—H8A0.9600
C4—C31.397 (3)C8—H8B0.9600
O3—C71.208 (3)C8—H8C0.9600
N1—O11.207 (2)C9—H9A0.9600
N1—O21.212 (3)C9—H9B0.9600
N1—C31.479 (3)C9—H9C0.9600
C3—C21.374 (3)
O4—S1—O5118.97 (11)C4—C5—H5119.5
O4—S1—N2109.18 (10)C1—C6—C5119.4 (2)
O5—S1—N2104.46 (9)C1—C6—H6120.3
O4—S1—C8109.91 (13)C5—C6—H6120.3
O5—S1—C8109.27 (13)O3—C7—N2119.2 (2)
N2—S1—C8103.88 (11)O3—C7—C9124.0 (2)
C7—N2—C4123.11 (18)N2—C7—C9116.74 (19)
C7—N2—S1120.17 (14)C3—C2—C1118.6 (2)
C4—N2—S1116.71 (14)C3—C2—H2120.7
C5—C4—C3117.84 (19)C1—C2—H2120.7
C5—C4—N2118.61 (18)S1—C8—H8A109.5
C3—C4—N2123.35 (18)S1—C8—H8B109.5
O1—N1—O2123.1 (2)H8A—C8—H8B109.5
O1—N1—C3117.83 (19)S1—C8—H8C109.5
O2—N1—C3119.05 (19)H8A—C8—H8C109.5
C2—C3—C4121.92 (19)H8B—C8—H8C109.5
C2—C3—N1116.14 (18)C7—C9—H9A109.5
C4—C3—N1121.95 (18)C7—C9—H9B109.5
C2—C1—C6121.1 (2)H9A—C9—H9B109.5
C2—C1—Cl1119.02 (18)C7—C9—H9C109.5
C6—C1—Cl1119.86 (18)H9A—C9—H9C109.5
C6—C5—C4121.1 (2)H9B—C9—H9C109.5
C6—C5—H5119.5
O4—S1—N2—C7−50.92 (18)O1—N1—C3—C4163.6 (2)
O5—S1—N2—C7−179.19 (16)O2—N1—C3—C4−18.8 (3)
C8—S1—N2—C766.30 (19)C3—C4—C5—C60.5 (4)
O4—S1—N2—C4130.04 (16)N2—C4—C5—C6−174.5 (2)
O5—S1—N2—C41.77 (17)C2—C1—C6—C5−3.1 (4)
C8—S1—N2—C4−112.74 (18)Cl1—C1—C6—C5175.8 (2)
C7—N2—C4—C5−91.8 (3)C4—C5—C6—C12.1 (4)
S1—N2—C4—C587.2 (2)C4—N2—C7—O3179.2 (2)
C7—N2—C4—C393.5 (3)S1—N2—C7—O30.2 (3)
S1—N2—C4—C3−87.5 (2)C4—N2—C7—C91.0 (3)
C5—C4—C3—C2−2.1 (3)S1—N2—C7—C9−178.00 (16)
N2—C4—C3—C2172.6 (2)C4—C3—C2—C11.2 (4)
C5—C4—C3—N1177.6 (2)N1—C3—C2—C1−178.6 (2)
N2—C4—C3—N1−7.7 (3)C6—C1—C2—C31.5 (4)
O1—N1—C3—C2−16.7 (3)Cl1—C1—C2—C3−177.41 (18)
O2—N1—C3—C2160.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2···O5i0.932.553.404 (3)153
C9—H9B···O3ii0.962.583.521 (3)169

Symmetry codes: (i) −x, −y+2, −z; (ii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2142).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2007). APEX2, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Wen, Y.-H., Li, X.-M., Xu, L.-L., Tang, X.-F. & Zhang, S.-S. (2006). Acta Cryst. E62, o4427–o4428.
  • Wen, Y.-H., Zhang, S.-S., Yu, B.-H., Li, X.-M. & Liu, Q. (2005). Acta Cryst. E61, o347–o348.
  • Zhang, S.-S., Xu, L.-L., Wen, H.-L., Li, X.-M. & Wen, Y.-H. (2006). Acta Cryst. E62, o3071–o3072.
  • Zhang, S.-S., Xu, L.-L., Zou, J., Bi, S. & Wen, Y.-H. (2006). Acta Cryst. E62, o4478–o4479.
  • Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc.26, 1771–1175.
  • Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull.54, 1175–1178. [PubMed]
  • Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2008). Eur. J. Med. Chem. doi:10.1016/j.ejmech.2008.08.002.
  • Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Weaver, G. W. (2007). Acta Cryst. E63, o4215–o4216.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography