PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): m1400.
Published online 2008 October 15. doi:  10.1107/S1600536808032558
PMCID: PMC2959783

catena-Poly[[bis­(3,5-dicarboxy­benzo­ato)cobalt(II)]-μ-4,4′-bipyridine]

Abstract

In the title compound, [Co(C9H5O6)2(C10H8N2)]n, the asymmetric unit consists of one Co2+ ion with site symmetry 2, one mono-deprotonated 1,3,5-benzene­tricarboxylic acid anion and one-half of a 4,4′-bipyridine (4,4′-bipy) mol­ecule, in which two N and two C atoms have site symmetry 2. In the crystal structure, the Co2+ centre is coordinated by four O atoms from two bidentate carboxyl­ate groups of two anions and two N atoms of two 4,4′-bipy mol­ecules, resulting in infinite chains propagating in [010]. The cobalt coordination is distorted trans-CoO4N2 octa­hedral and inter­chain O—H(...)O hydrogen bonds complete the structure.

Related literature

For background, see: Feller et al. (2007 [triangle]); Brown et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1400-scheme1.jpg

Experimental

Crystal data

  • [Co(C9H5O6)2(C10H8N2)]
  • M r = 633.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1400-efi1.jpg
  • a = 10.6682 (7) Å
  • b = 11.0490 (7) Å
  • c = 22.6563 (14) Å
  • β = 101.401 (1)°
  • V = 2617.9 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.73 mm−1
  • T = 293 (2) K
  • 0.18 × 0.15 × 0.13 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.880, T max = 0.911
  • 7123 measured reflections
  • 2579 independent reflections
  • 2051 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.098
  • S = 1.02
  • 2579 reflections
  • 197 parameters
  • 7 restraints
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.73 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808032558/hb2815sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808032558/hb2815Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Basic Research Foundation for Natural Science of Henan University.

supplementary crystallographic information

Comment

Recently, many efforts in coordination chemistry and crystal engineering have been devoted to the construction of metal-organic coordination polymers (MOCPs) employing both coordination bonds and/or hydrogen bonds, due to their appropriate strength and directionality (Feller et al. 2007). Dual-ligand or multidentate organic ligands are usually engaged in the construction of MOCPs, among which carboxylates and N,N-bidentate ligands are all the simplest connectors potentially able to bridge metal ions (Brown et al. 2008). Herein, we report the title compound (I) containing organic dual-ligands (Fig. 1).

The structure of (I) presents a one-dimensional infinite chain (Fig.2), in which the Co2+ centre (site symmetry 2) is coordinated by four O atoms from two bidentate carboxylate groups of two 1,3,5-benzenetricarboxylic acid anions, two N atoms of two 4,4'-bipyridine molecules. The Co2+ caion resides in a distorted octahedral configuration. In the equatorial plane, it is chelted by four carboxylate oxygen atoms (O1, O2 and their symmetry equivalents) from two 1,3,5-benzenetricarboxylic acid anions (Table 1), in which the Co—O distances are very different.

In addition, these one-dimensional chains are linked together by O—H···O hydrogen bonds between carboxylate groups generating a three-dimensional framework (Fig. 3 and Table 2).

Experimental

Solid Co(CH3COO)2.4H2O (1 mmol, 0.245 g) was added to an aqueous solution (25 ml) of 1,3,5-benzenetricarboxylic acid (2 mmol, 0.420 g) and 4,4'-bipyridine (1 mmol, 0.156 g). The mixture was refluxed for two hours at 373 K. The solution was filtered, and the filtrate was kept at room temperature. After ten days, purple blocks of (I) were obtained.

Refinement

The O-bound H atoms were located in difference Fourier maps and refined as riding in their as-found relative positions with Uiso(H) = 1.5Ueq(O). The C-bound H atoms were geometrically placed (C—H = 0.93Å) and refined as riding, Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Asymmetric unit of (I), showing displacement ellipsoids at the 50% probability level for the non-hydrogen atoms.
Fig. 2.
One-dimensional chain structure of (I). H atoms are omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 3.
Three-dimensional structure of (I) arising by means of hydrogen bonds. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

[Co(C9H5O6)2(C10H8N2)]F(000) = 1292
Mr = 633.37Dx = 1.607 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1750 reflections
a = 10.6682 (7) Åθ = 2.7–25.9°
b = 11.0490 (7) ŵ = 0.73 mm1
c = 22.6563 (14) ÅT = 293 K
β = 101.401 (1)°Block, purple
V = 2617.9 (3) Å30.18 × 0.15 × 0.13 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer2579 independent reflections
Radiation source: fine-focus sealed tube2051 reflections with I > 2σ(I)
graphiteRint = 0.031
ω scansθmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −13→13
Tmin = 0.880, Tmax = 0.911k = −13→13
7123 measured reflectionsl = −27→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: difmap and geom
wR(F2) = 0.098H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0508P)2 + 1.9201P] where P = (Fo2 + 2Fc2)/3
2579 reflections(Δ/σ)max = 0.001
197 parametersΔρmax = 0.31 e Å3
7 restraintsΔρmin = −0.73 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.50000.64801 (3)0.25000.01788 (9)
O10.60733 (12)0.64666 (13)0.18575 (6)0.0280 (3)
O20.40351 (13)0.65638 (14)0.14327 (6)0.0347 (4)
O30.30786 (17)0.7752 (2)−0.06851 (8)0.0661 (6)
H30.25230.7863−0.09820.099*
O40.39825 (18)0.6736 (2)−0.13349 (8)0.0692 (6)
O50.85792 (15)0.55679 (17)−0.04477 (7)0.0509 (5)
H50.92870.5390−0.04390.076*
O60.91135 (16)0.5199 (2)0.05406 (8)0.0591 (6)
N10.50000.4678 (2)0.25000.0232 (4)
N20.5000−0.1726 (2)0.25000.0274 (6)
C10.55508 (19)0.64578 (18)0.07857 (9)0.0281 (5)
C20.67509 (19)0.60572 (19)0.07160 (9)0.0298 (5)
H20.73600.58430.10530.036*
C30.70461 (19)0.5975 (2)0.01464 (10)0.0306 (5)
C40.6137 (2)0.6293 (2)−0.03605 (10)0.0338 (5)
H40.63260.6222−0.07420.041*
C50.4946 (2)0.6717 (2)−0.02928 (10)0.0329 (5)
C60.4664 (2)0.6797 (2)0.02785 (10)0.0327 (5)
H60.38670.70840.03220.039*
C70.51892 (19)0.65013 (18)0.13895 (9)0.0265 (5)
C80.8332 (2)0.5551 (2)0.00808 (10)0.0362 (6)
C90.3971 (2)0.7059 (2)−0.08302 (10)0.0392 (6)
C100.4034 (2)0.40519 (19)0.21766 (10)0.0321 (5)
H100.33560.44770.19470.039*
C110.3993 (2)0.28136 (19)0.21669 (10)0.0330 (5)
H110.32950.24140.19380.040*
C120.50000.2156 (3)0.25000.0284 (7)
C130.50000.0812 (3)0.25000.0269 (7)
C140.38822 (19)0.01470 (19)0.23157 (10)0.0333 (5)
H140.31080.05470.21920.040*
C150.3916 (2)−0.1093 (2)0.23148 (10)0.0328 (5)
H150.3158−0.15140.21810.039*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.02150 (17)0.01328 (16)0.01973 (17)0.0000.00619 (13)0.000
O10.0246 (6)0.0345 (8)0.0250 (7)0.0022 (6)0.0052 (5)0.0008 (6)
O20.0252 (7)0.0480 (9)0.0314 (8)0.0040 (7)0.0071 (6)0.0026 (7)
O30.0446 (10)0.1163 (17)0.0354 (10)0.0378 (11)0.0033 (8)0.0035 (10)
O40.0557 (11)0.1214 (18)0.0293 (10)0.0270 (12)0.0052 (8)−0.0022 (10)
O50.0367 (8)0.0734 (12)0.0478 (10)0.0152 (8)0.0210 (7)0.0025 (9)
O60.0376 (9)0.0938 (15)0.0466 (10)0.0261 (9)0.0100 (8)0.0094 (10)
N10.0263 (7)0.0191 (7)0.0246 (7)0.0000.0062 (6)0.000
N20.0268 (12)0.0246 (13)0.0313 (13)0.0000.0072 (10)0.000
C10.0268 (10)0.0300 (10)0.0276 (10)0.0007 (9)0.0057 (8)−0.0005 (9)
C20.0250 (10)0.0327 (11)0.0308 (11)0.0034 (9)0.0030 (9)0.0013 (9)
C30.0254 (10)0.0333 (11)0.0335 (11)0.0015 (9)0.0070 (9)−0.0025 (9)
C40.0294 (10)0.0441 (13)0.0296 (11)0.0011 (10)0.0097 (9)−0.0015 (10)
C50.0289 (11)0.0410 (13)0.0288 (11)0.0011 (9)0.0054 (9)0.0003 (9)
C60.0256 (10)0.0413 (12)0.0320 (12)0.0031 (9)0.0071 (9)−0.0010 (10)
C70.0259 (10)0.0244 (10)0.0291 (10)0.0014 (8)0.0050 (8)0.0002 (9)
C80.0297 (11)0.0435 (13)0.0369 (13)0.0022 (10)0.0100 (10)−0.0008 (10)
C90.0292 (11)0.0614 (15)0.0284 (12)0.0044 (11)0.0092 (9)0.0027 (11)
C100.0317 (11)0.0265 (11)0.0370 (12)0.0027 (9)0.0042 (9)0.0031 (9)
C110.0310 (11)0.0271 (11)0.0391 (12)−0.0005 (9)0.0030 (9)−0.0002 (9)
C120.0267 (14)0.0246 (15)0.0354 (16)0.0000.0096 (12)0.000
C130.0270 (14)0.0238 (15)0.0300 (16)0.0000.0057 (12)0.000
C140.0246 (10)0.0265 (11)0.0464 (13)0.0007 (9)0.0015 (10)0.0022 (10)
C150.0241 (10)0.0276 (11)0.0456 (13)−0.0015 (9)0.0044 (10)0.0006 (10)

Geometric parameters (Å, °)

Co1—N2i1.982 (2)C1—C71.494 (3)
Co1—N11.992 (2)C2—C31.390 (3)
Co1—O1ii2.0221 (14)C2—H20.9300
Co1—O12.0221 (14)C3—C41.393 (3)
Co1—O2ii2.4354 (13)C3—C81.485 (3)
Co1—O22.4354 (13)C4—C51.391 (3)
O1—C71.273 (2)C4—H40.9300
O2—C71.256 (2)C5—C61.389 (3)
O3—C91.314 (3)C5—C91.485 (3)
O3—H30.8127C6—H60.9300
O4—C91.200 (3)C10—C111.369 (3)
O5—C81.276 (3)C10—H100.9300
O5—H50.7761C11—C121.390 (3)
O6—C81.260 (3)C11—H110.9300
N1—C101.333 (2)C12—C11ii1.390 (3)
N1—C10ii1.333 (2)C12—C131.485 (4)
N2—C15ii1.346 (2)C13—C141.392 (2)
N2—C151.346 (2)C13—C14ii1.392 (2)
N2—Co1iii1.982 (2)C14—C151.371 (3)
C1—C61.388 (3)C14—H140.9300
C1—C21.393 (3)C15—H150.9300
N2i—Co1—N1180.0C1—C6—C5121.1 (2)
N2i—Co1—O1ii90.42 (4)C1—C6—H6119.5
N1—Co1—O1ii89.58 (4)C5—C6—H6119.5
N2i—Co1—O190.42 (4)O2—C7—O1120.87 (19)
N1—Co1—O189.58 (4)O2—C7—C1120.51 (18)
O1ii—Co1—O1179.16 (8)O1—C7—C1118.62 (17)
C7—O1—Co199.65 (12)O6—C8—O5123.7 (2)
C9—O3—H3109.1O6—C8—C3119.2 (2)
C8—O5—H5110.6O5—C8—C3117.11 (19)
C10—N1—C10ii117.5 (2)O4—C9—O3123.8 (2)
C10—N1—Co1121.23 (12)O4—C9—C5124.6 (2)
C10ii—N1—Co1121.23 (12)O3—C9—C5111.60 (19)
C15ii—N2—C15117.4 (2)N1—C10—C11123.1 (2)
C15ii—N2—Co1iii121.30 (12)N1—C10—H10118.5
C15—N2—Co1iii121.30 (12)C11—C10—H10118.5
C6—C1—C2118.9 (2)C10—C11—C12119.7 (2)
C6—C1—C7119.49 (18)C10—C11—H11120.2
C2—C1—C7121.58 (18)C12—C11—H11120.2
C3—C2—C1120.52 (19)C11ii—C12—C11116.9 (3)
C3—C2—H2119.7C11ii—C12—C13121.54 (13)
C1—C2—H2119.7C11—C12—C13121.54 (13)
C2—C3—C4120.00 (19)C14—C13—C14ii116.3 (3)
C2—C3—C8119.79 (18)C14—C13—C12121.83 (13)
C4—C3—C8120.2 (2)C14ii—C13—C12121.83 (13)
C5—C4—C3119.7 (2)C15—C14—C13120.4 (2)
C5—C4—H4120.1C15—C14—H14119.8
C3—C4—H4120.1C13—C14—H14119.8
C6—C5—C4119.72 (19)N2—C15—C14122.7 (2)
C6—C5—C9120.1 (2)N2—C15—H15118.7
C4—C5—C9120.2 (2)C14—C15—H15118.7
N2i—Co1—O1—C7−88.18 (11)C6—C1—C7—O1−163.76 (19)
N1—Co1—O1—C791.82 (11)C2—C1—C7—O117.7 (3)
O1ii—Co1—O1—C791.82 (12)C2—C3—C8—O64.3 (3)
N2i—Co1—N1—C10−141 (22)C4—C3—C8—O6−175.8 (2)
O1ii—Co1—N1—C1083.93 (12)C2—C3—C8—O5−175.6 (2)
O1—Co1—N1—C10−96.07 (12)C4—C3—C8—O54.3 (3)
N2i—Co1—N1—C10ii39 (23)C6—C5—C9—O4−159.5 (3)
O1ii—Co1—N1—C10ii−96.07 (12)C4—C5—C9—O419.2 (4)
O1—Co1—N1—C10ii83.93 (12)C6—C5—C9—O319.8 (3)
C6—C1—C2—C3−1.3 (3)C4—C5—C9—O3−161.5 (2)
C7—C1—C2—C3177.20 (19)C10ii—N1—C10—C110.39 (16)
C1—C2—C3—C4−0.1 (3)Co1—N1—C10—C11−179.61 (16)
C1—C2—C3—C8179.8 (2)N1—C10—C11—C12−0.8 (3)
C2—C3—C4—C51.4 (3)C10—C11—C12—C11ii0.37 (15)
C8—C3—C4—C5−178.4 (2)C10—C11—C12—C13−179.63 (15)
C3—C4—C5—C6−1.3 (3)C11ii—C12—C13—C14161.59 (15)
C3—C4—C5—C9180.0 (2)C11—C12—C13—C14−18.41 (15)
C2—C1—C6—C51.5 (3)C11ii—C12—C13—C14ii−18.41 (15)
C7—C1—C6—C5−177.08 (19)C11—C12—C13—C14ii161.59 (15)
C4—C5—C6—C1−0.2 (3)C14ii—C13—C14—C15−0.70 (16)
C9—C5—C6—C1178.6 (2)C12—C13—C14—C15179.30 (16)
Co1—O1—C7—O21.9 (2)C15ii—N2—C15—C14−0.74 (16)
Co1—O1—C7—C1−177.68 (15)Co1iii—N2—C15—C14179.26 (16)
C6—C1—C7—O216.6 (3)C13—C14—C15—N21.5 (3)
C2—C1—C7—O2−161.9 (2)

Symmetry codes: (i) x, y+1, z; (ii) −x+1, y, −z+1/2; (iii) x, y−1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O2iv0.811.882.648 (2)157
O5—H5···O6v0.781.882.651 (2)170

Symmetry codes: (iv) −x+1/2, −y+3/2, −z; (v) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2815).

References

  • Brown, K. A., Martin, D. P. & LaDuca, R. L. (2008). CrystEngComm, 10, 1305–1308.
  • Bruker (2001). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Feller, R. K., Forster, P. M., Wudl, F. & Cheetham, A. K. (2007). Inorg. Chem.46, 8717–8721. [PubMed]
  • Sheldrick, G. M. (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography