PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2235.
Published online 2008 October 31. doi:  10.1107/S160053680803482X
PMCID: PMC2959778

(Z,Z)-1,4-Diiodo-1,4-bis­(trimethyl­silyl)buta-1,3-diene

Abstract

The asymmetric unit of the title compound, C10H20I2Si2, contains two half-mol­ecules. Both complete molecules are generated by crystallographic inversion centers located at the mid-points of the central C—C single bonds; the butadiene groups are planar, with a trans conformation about the central C—C bond. The mol­ecules show short intra­molecular H(...)I contacts of 2.89 and 2.92 Å. The crystal packing shows no short inter­molecular contacts.

Related literature

For the synthesis of the title compound, see: Yamaguchi et al. (1998 [triangle]). For related structures, see: Saito et al. (2007 [triangle]); Yamamoto et al. (2002 [triangle]). For van der Waals radii, see: Bondi (1964 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2235-scheme1.jpg

Experimental

Crystal data

  • C10H20I2Si2
  • M r = 450.24
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2235-efi1.jpg
  • a = 6.3553 (17) Å
  • b = 11.502 (2) Å
  • c = 11.698 (2) Å
  • α = 103.027 (13)°
  • β = 90.555 (17)°
  • γ = 90.99 (2)°
  • V = 832.9 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.89 mm−1
  • T = 155 (2) K
  • 0.46 × 0.36 × 0.28 mm

Data collection

  • Siemens SMART 1K CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.275, T max = 0.336
  • 15331 measured reflections
  • 5837 independent reflections
  • 5272 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021
  • wR(F 2) = 0.059
  • S = 1.03
  • 5837 reflections
  • 134 parameters
  • H-atom parameters constrained
  • Δρmax = 1.12 e Å−3
  • Δρmin = −0.94 e Å−3

Data collection: SMART (Siemens, 1995 [triangle]); cell refinement: SMART; data reduction: SAINT (Siemens, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680803482X/su2074sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803482X/su2074Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The title compound crystallized with two independent centrosymmetric molecules in the unit cell (Fig.1). Each molecule has a crystallographic inversion center at the midpoint of the central C—C single bond. The geometrical parameters of both molecules are similar. The butadiene groups are planar with a trans-conformation about the central C—C bond. The trimethylsilyl groups adopt orientations with a methyl group syn-periplanar with the nearest C=C double bond: torsion angles C3—Si1—C2—C1 = -12.1 (2)° and C9—Si2—C7—C6 = -21.2 (2)°. The molecules show intramolecular H···I contacts of 2.89 Å and 2.92 Å (Table 1), which are shorter than the van der Waals contact distance of 3.18 Å (Bondi, 1964).

The crystal packing of the title compound (Fig. 2) shows no short intermolecular contacts. The shortest intermolecular I···I distances of 3.876 (1) Å [I1···I2i; symmetry operation i) = 1+x, y, z] and 3.973 (1) Å [I1···I2] are comparable to the van der Waals contact distance of 3.96 Å.

Experimental

The title compound was prepared as described by Yamaguchi et al. (1998), and recrystallized from n-hexane at 153 K.

Refinement

H atoms were geometrically positioned and treated as riding atoms: Cplanar—H = 0.95 Å, Cmethyl—H=0.98 Å, with Uiso(H)= 1.2Ueq(Cbutene) and = 1.5Ueq(Cmethyl).

Figures

Fig. 1.
A view of the two independent molecules of the title compound, with displacement ellipsoids drawn at the 50% probability level (Unlabeled atoms are related to labeled atoms by inversion centers at the midpoints of the molecules).
Fig. 2.
The crystal packing of the title compound, viewed down the a axis (the displacement ellipsoids are drawn at the 50% probability level).

Crystal data

C10H20I2Si2Z = 2
Mr = 450.24F(000) = 428
Triclinic, P1Dx = 1.795 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.3553 (17) ÅCell parameters from 124 reflections
b = 11.502 (2) Åθ = 3–23°
c = 11.698 (2) ŵ = 3.89 mm1
α = 103.027 (13)°T = 155 K
β = 90.555 (17)°Block, colorless
γ = 90.99 (2)°0.46 × 0.36 × 0.28 mm
V = 832.9 (3) Å3

Data collection

Siemens SMART 1K CCD diffractometer5837 independent reflections
Radiation source: normal-focus sealed tube5272 reflections with I > 2σ(I)
graphiteRint = 0.021
ω scansθmax = 32.5°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)h = −9→9
Tmin = 0.275, Tmax = 0.336k = −17→17
15331 measured reflectionsl = −17→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.059w = 1/[σ2(Fo2) + (0.02P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
5837 reflectionsΔρmax = 1.12 e Å3
134 parametersΔρmin = −0.94 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0130 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I10.631493 (18)0.679368 (10)0.508829 (10)0.02900 (4)
I20.124665 (17)0.825214 (9)0.402449 (9)0.02623 (4)
Si10.76330 (7)0.63323 (4)0.77198 (4)0.02223 (9)
Si20.47343 (7)0.86551 (4)0.19545 (4)0.02225 (9)
C10.9715 (3)0.51656 (14)0.56130 (13)0.0211 (3)
H11.05020.48040.61290.025*
C20.8224 (2)0.59143 (13)0.61143 (13)0.0198 (3)
C30.9030 (3)0.53065 (18)0.84764 (16)0.0321 (4)
H3A0.85750.54460.92930.048*
H3B1.05520.54550.84580.048*
H3C0.87020.44780.80770.048*
C40.8577 (4)0.79022 (18)0.8278 (2)0.0405 (5)
H4A0.82700.81570.91160.061*
H4B0.78580.84220.78480.061*
H4C1.00980.79530.81650.061*
C50.4740 (3)0.62065 (18)0.79288 (17)0.0322 (4)
H5A0.44560.62500.87590.048*
H5B0.42060.54420.74570.048*
H5C0.40370.68620.76800.048*
C60.5181 (3)0.98312 (14)0.43727 (13)0.0221 (3)
H60.63911.01800.41030.027*
C70.4013 (3)0.90828 (14)0.35421 (13)0.0210 (3)
C80.6036 (3)0.71790 (16)0.16638 (17)0.0332 (4)
H8A0.72520.72200.21940.050*
H8B0.65060.69740.08490.050*
H8C0.50340.65670.17960.050*
C90.6592 (3)0.98330 (18)0.16797 (18)0.0361 (4)
H9A0.78460.98700.21820.054*
H9B0.59011.06070.18590.054*
H9C0.70050.96410.08540.054*
C100.2345 (3)0.85504 (18)0.09994 (16)0.0342 (4)
H10A0.27590.83700.01740.051*
H10B0.16130.93120.11820.051*
H10C0.14040.79140.11390.051*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I10.02999 (7)0.03118 (7)0.02837 (7)0.01194 (4)0.00029 (5)0.01117 (5)
I20.02378 (7)0.02802 (7)0.02598 (6)−0.00570 (4)−0.00083 (4)0.00471 (4)
Si10.0211 (2)0.0241 (2)0.01973 (19)0.00282 (16)0.00184 (15)0.00115 (16)
Si20.0263 (2)0.0217 (2)0.01793 (19)0.00165 (16)0.00037 (16)0.00277 (15)
C10.0221 (7)0.0224 (7)0.0191 (6)0.0036 (5)0.0002 (5)0.0049 (5)
C20.0193 (7)0.0203 (7)0.0200 (6)0.0019 (5)−0.0005 (5)0.0046 (5)
C30.0302 (9)0.0438 (10)0.0248 (8)0.0096 (7)0.0031 (7)0.0123 (7)
C40.0426 (12)0.0312 (9)0.0408 (11)−0.0023 (8)−0.0044 (9)−0.0063 (8)
C50.0224 (9)0.0423 (10)0.0307 (9)0.0045 (7)0.0053 (7)0.0050 (7)
C60.0213 (7)0.0223 (7)0.0217 (7)−0.0019 (5)0.0011 (5)0.0030 (5)
C70.0219 (7)0.0203 (7)0.0207 (7)0.0013 (5)0.0008 (5)0.0045 (5)
C80.0414 (11)0.0279 (9)0.0284 (8)0.0081 (7)−0.0002 (7)0.0021 (7)
C90.0410 (11)0.0339 (9)0.0349 (9)−0.0020 (8)0.0109 (8)0.0108 (8)
C100.0387 (11)0.0388 (10)0.0245 (8)0.0034 (8)−0.0048 (7)0.0060 (7)

Geometric parameters (Å, °)

I1—C22.1207 (16)C4—H4B0.9800
I2—C72.1276 (17)C4—H4C0.9800
Si1—C31.8591 (19)C5—H5A0.9800
Si1—C41.863 (2)C5—H5B0.9800
Si1—C51.8647 (19)C5—H5C0.9800
Si1—C21.8742 (16)C6—C71.350 (2)
Si2—C101.863 (2)C6—C6ii1.453 (3)
Si2—C81.8644 (19)C6—H60.9500
Si2—C91.866 (2)C8—H8A0.9800
Si2—C71.8744 (16)C8—H8B0.9800
C1—C21.339 (2)C8—H8C0.9800
C1—C1i1.450 (3)C9—H9A0.9800
C1—H10.9500C9—H9B0.9800
C3—H3A0.9800C9—H9C0.9800
C3—H3B0.9800C10—H10A0.9800
C3—H3C0.9800C10—H10B0.9800
C4—H4A0.9800C10—H10C0.9800
C3—Si1—C4110.85 (10)Si1—C5—H5A109.5
C3—Si1—C5109.79 (9)Si1—C5—H5B109.5
C4—Si1—C5110.45 (10)H5A—C5—H5B109.5
C3—Si1—C2109.04 (8)Si1—C5—H5C109.5
C4—Si1—C2107.21 (9)H5A—C5—H5C109.5
C5—Si1—C2109.45 (8)H5B—C5—H5C109.5
C10—Si2—C8109.30 (9)C7—C6—C6ii128.06 (19)
C10—Si2—C9110.53 (10)C7—C6—H6116.0
C8—Si2—C9110.39 (10)C6ii—C6—H6116.0
C10—Si2—C7110.61 (9)C6—C7—Si2123.88 (12)
C8—Si2—C7108.94 (8)C6—C7—I2119.83 (12)
C9—Si2—C7107.04 (8)Si2—C7—I2116.23 (8)
C2—C1—C1i128.56 (19)Si2—C8—H8A109.5
C2—C1—H1115.7Si2—C8—H8B109.5
C1i—C1—H1115.7H8A—C8—H8B109.5
C1—C2—Si1126.01 (12)Si2—C8—H8C109.5
C1—C2—I1120.61 (12)H8A—C8—H8C109.5
Si1—C2—I1113.35 (8)H8B—C8—H8C109.5
Si1—C3—H3A109.5Si2—C9—H9A109.5
Si1—C3—H3B109.5Si2—C9—H9B109.5
H3A—C3—H3B109.5H9A—C9—H9B109.5
Si1—C3—H3C109.5Si2—C9—H9C109.5
H3A—C3—H3C109.5H9A—C9—H9C109.5
H3B—C3—H3C109.5H9B—C9—H9C109.5
Si1—C4—H4A109.5Si2—C10—H10A109.5
Si1—C4—H4B109.5Si2—C10—H10B109.5
H4A—C4—H4B109.5H10A—C10—H10B109.5
Si1—C4—H4C109.5Si2—C10—H10C109.5
H4A—C4—H4C109.5H10A—C10—H10C109.5
H4B—C4—H4C109.5H10B—C10—H10C109.5
C1i—C1—C2—Si1−178.07 (17)C6ii—C6—C7—Si2−176.55 (18)
C1i—C1—C2—I10.2 (3)C6ii—C6—C7—I20.6 (3)
C3—Si1—C2—C1−12.13 (17)C10—Si2—C7—C6−141.69 (15)
C4—Si1—C2—C1107.93 (16)C8—Si2—C7—C698.15 (16)
C5—Si1—C2—C1−132.25 (15)C9—Si2—C7—C6−21.21 (17)
C3—Si1—C2—I1169.49 (8)C10—Si2—C7—I241.11 (11)
C4—Si1—C2—I1−70.44 (11)C8—Si2—C7—I2−79.04 (11)
C5—Si1—C2—I149.37 (11)C9—Si2—C7—I2161.59 (9)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1···I1i0.952.923.394 (2)112
C6—H6···I2ii0.952.893.378 (2)113

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2074).

References

  • Bondi, A. (1964). J. Phys. Chem.68, 441–451.
  • Saito, M., Nakamura, M., Tajima, T. & Yoshioka, M. (2007). Angew. Chem. Int. Ed.46, 1504–1507. [PubMed]
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1995). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Yamaguchi, S., Jin, R.-Z., Tamao, K. & Sato, F. (1998). J. Org. Chem.63, 10060–10062.
  • Yamamoto, Y., Ohno, T. & Itoh, K. (2002). Chem. Eur. J.8, 4734–4741. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography