PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2135.
Published online 2008 October 18. doi:  10.1107/S1600536808033357
PMCID: PMC2959777

1-(2-Chloro­benzyl­idene)-2-(2,4-dinitro­phen­yl)hydrazine

Abstract

In the title compound, C13H9ClN4O4, there are two crystallographically independent mol­ecules in the asymmetric unit, which have very similar conformations. The C=N—N angles in each independent mol­ecule are 115.0 (2) and 116.6 (2)°, which are significantly smaller than the ideal value of 120° expected for sp 2-hybridized N atoms. This is probably a consequence of repulsion between the nitro­gen lone pairs and the adjacent N—N bonds. Two bifurcated intra­molecular N—H(...)O hydrogen bonds help to establish the mol­ecular conformation and consolidate the crystal packing.

Related literature

For general background, see: Garnovskii et al. (1993 [triangle]); Anderson et al. (1997 [triangle]); Musie et al. (2001 [triangle]); Paul et al. (2002 [triangle]); Shi et al. (2007 [triangle]); For related structures, see: Baughman et al. (2004 [triangle]); Zare et al. (2005 [triangle]); El-Seify & El-Dossoki (2006 [triangle]); Kim & Yoon (1998 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2135-scheme1.jpg

Experimental

Crystal data

  • C13H9ClN4O4
  • M r = 320.69
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2135-efi1.jpg
  • a = 7.2286 (7) Å
  • b = 7.6596 (8) Å
  • c = 25.145 (2) Å
  • α = 95.691 (2)°
  • β = 93.030 (2)°
  • γ = 99.728 (3)°
  • V = 1362.0 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.31 mm−1
  • T = 295 (2) K
  • 0.15 × 0.12 × 0.08 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.956, T max = 0.976
  • 7216 measured reflections
  • 4776 independent reflections
  • 3273 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.125
  • S = 1.07
  • 4776 reflections
  • 397 parameters
  • H-atom parameters constrained
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808033357/fj2153sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808033357/fj2153Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Postgraduate Foundation of Taishan University (grant No. Y04-2-08).

supplementary crystallographic information

Comment

In recent years, a number of Schiff-bases have been investigated in terms of their coordination chemistry (Garnovskii et al., 1993; Musie et al., 2001; Paul et al., 2002; Shi et al., 2007;) and biological systems (Anderson et al., 1997). Especial the 2,4-dinitrophenylhydrazones exhibit good nonlinear optical (NLO) and crystalline properties (Baughman et al., 2004). As a result of their significant molecular nonlinearities and remarkable ability to crystallize in non-centrosymmetric crystal systems (Zare et al., 2005; El-Seify & El-Dossoki, 2006; Kim & Yoon, 1998), many X-ray structural studies of 2,4-dinitrophenylhydrazone have been reported. In order to search for new 2,4-dinitrophenylhydrazones, the title compound, (I), was synthesized and its crystal structure determined. In (I) (Fig. 1), the bond lengths and angles are in good agreement with the expected values (Allen et al., 1987). In the crystal structure (Fig. 2), the molecules are stabilized by intramolecular N—H···O hydrogen bonds.

Experimental

The title compound was synthesized by the reaction of (2,4-dinitro-phenyl)-hydrazine(1 mmol, 198.1 mg) with 2-Chloro-benzaldehyde (1 mmol, 140.6 mg) in ethanol (20 ml) under reflux conditions (343 K) for 3 h. The solvent was removed and the solid product recrystallized from tetrahydrofuran, and then dried in vacuo to give pure title compound in 89% yield. After five days yellow crystals suitable for X-ray diffraction study were obtained.

Refinement

All H atoms were placed in idealized positions (C—H = 0.93–0.97 Å, N—H = 0.86 Å) and refined as riding atoms. For those bound to C, Uiso(H) = 1.2 or 1.5Ueq(C). while for those bound to N, Uiso(H) = 1.2 Ueq(N).

Figures

Fig. 1.
The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
The molecules are stabilized by intramolecular N—H···O hydrogen bonds. The dashed lines indicate hydrogen bonds.

Crystal data

C13H9ClN4O4Z = 4
Mr = 320.69F(000) = 656
Triclinic, P1Dx = 1.564 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2286 (7) ÅCell parameters from 1793 reflections
b = 7.6596 (8) Åθ = 2.7–24.9°
c = 25.145 (2) ŵ = 0.31 mm1
α = 95.691 (2)°T = 295 K
β = 93.030 (2)°Block, yellow
γ = 99.728 (3)°0.15 × 0.12 × 0.08 mm
V = 1362.0 (2) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer4776 independent reflections
Radiation source: fine-focus sealed tube3273 reflections with I > 2σ(I)
graphiteRint = 0.021
[var phi] and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −8→8
Tmin = 0.956, Tmax = 0.976k = −9→5
7216 measured reflectionsl = −28→29

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0511P)2 + 0.2987P] where P = (Fo2 + 2Fc2)/3
4776 reflections(Δ/σ)max = 0.001
397 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.32732 (10)0.39535 (11)0.21587 (3)0.0647 (2)
Cl20.43812 (11)0.46461 (12)0.65151 (3)0.0739 (3)
O11.1413 (3)0.8066 (3)0.24502 (8)0.0769 (6)
O21.4364 (3)0.8957 (4)0.23973 (8)0.0901 (8)
O31.6810 (3)1.1413 (4)0.08840 (11)0.1047 (9)
O41.4958 (3)1.1774 (3)0.02231 (9)0.0754 (6)
O5−0.0518 (4)−0.1695 (3)0.37193 (10)0.0957 (8)
O60.0550 (3)−0.0357 (3)0.44708 (4)0.0817 (7)
O7−0.1612 (4)0.1254 (4)0.22106 (9)0.0899 (8)
O8−0.1463 (3)0.4102 (3)0.23032 (8)0.0804 (7)
N10.7500 (3)0.6855 (3)0.12714 (8)0.0490 (5)
N20.9138 (3)0.7485 (3)0.15793 (8)0.0506 (6)
H20.92180.73090.19120.061*
N31.2749 (4)0.8647 (3)0.21971 (9)0.0586 (6)
N41.5265 (4)1.1204 (3)0.06490 (11)0.0626 (7)
N50.2250 (3)0.4769 (3)0.48803 (9)0.0544 (6)
N60.1464 (3)0.3138 (3)0.46212 (8)0.0555 (6)
H60.13590.22060.47900.067*
N70.0038 (3)−0.0334 (3)0.40054 (10)0.0584 (6)
N8−0.1249 (3)0.2712 (4)0.24773 (9)0.0613 (6)
C10.2909 (3)0.4329 (3)0.14910 (10)0.0440 (6)
C20.4356 (3)0.5294 (3)0.12368 (10)0.0428 (6)
C30.3991 (4)0.5523 (4)0.07027 (10)0.0508 (7)
H30.49280.61540.05220.061*
C40.2273 (4)0.4835 (4)0.04363 (11)0.0565 (7)
H40.20580.50010.00780.068*
C50.0867 (4)0.3899 (4)0.06992 (11)0.0558 (7)
H5−0.02950.34380.05180.067*
C60.1179 (4)0.3646 (3)0.12285 (11)0.0506 (7)
H6A0.02320.30200.14070.061*
C70.6178 (3)0.6038 (3)0.15160 (10)0.0470 (6)
H70.63780.59150.18780.056*
C81.0634 (3)0.8386 (3)0.13611 (10)0.0436 (6)
C91.2406 (3)0.8962 (3)0.16462 (10)0.0450 (6)
C101.3931 (3)0.9855 (3)0.14090 (10)0.0466 (6)
H101.50961.02040.15990.056*
C111.3680 (4)1.0207 (3)0.08927 (10)0.0479 (6)
C121.1976 (4)0.9667 (4)0.05948 (11)0.0522 (7)
H121.18490.99130.02410.063*
C131.0483 (4)0.8770 (3)0.08255 (10)0.0501 (7)
H130.93410.84040.06250.060*
C140.4405 (4)0.6574 (4)0.62064 (11)0.0555 (7)
C150.3642 (4)0.6497 (4)0.56796 (10)0.0517 (7)
C160.3711 (4)0.8103 (4)0.54624 (12)0.0626 (8)
H160.32140.80990.51130.075*
C170.4496 (4)0.9698 (5)0.57508 (13)0.0700 (9)
H170.45371.07550.55950.084*
C180.5230 (4)0.9733 (5)0.62741 (13)0.0713 (9)
H180.57531.08130.64710.086*
C190.5181 (4)0.8170 (5)0.65008 (12)0.0664 (8)
H190.56690.81870.68510.080*
C200.2786 (4)0.4815 (4)0.53736 (10)0.0548 (7)
H200.26290.37710.55390.066*
C210.0852 (3)0.2998 (4)0.40979 (10)0.0451 (6)
C220.0134 (3)0.1353 (3)0.37897 (10)0.0461 (6)
C23−0.0515 (3)0.1268 (4)0.32600 (10)0.0482 (6)
H23−0.09750.01720.30640.058*
C24−0.0474 (3)0.2805 (4)0.30277 (9)0.0462 (6)
C250.0247 (4)0.4448 (4)0.33107 (10)0.0512 (7)
H250.02820.54840.31450.061*
C260.0902 (4)0.4542 (4)0.38328 (10)0.0513 (7)
H260.13940.56490.40180.062*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0580 (4)0.0837 (5)0.0489 (4)−0.0052 (4)0.0051 (3)0.0196 (4)
Cl20.0731 (5)0.0892 (6)0.0596 (5)0.0129 (4)−0.0076 (4)0.0178 (4)
O10.0683 (14)0.1072 (18)0.0515 (12)−0.0034 (13)0.0101 (10)0.0190 (12)
O20.0658 (15)0.131 (2)0.0598 (13)−0.0178 (14)−0.0154 (11)0.0137 (13)
O30.0540 (14)0.142 (2)0.1053 (19)−0.0302 (15)0.0087 (14)0.0299 (17)
O40.0938 (17)0.0597 (13)0.0773 (15)0.0076 (12)0.0342 (12)0.0249 (12)
O50.158 (3)0.0482 (13)0.0751 (16)0.0065 (15)−0.0070 (15)0.0038 (12)
O60.123 (2)0.0665 (14)0.0573 (13)0.0157 (13)−0.0011 (13)0.0240 (11)
O70.110 (2)0.0898 (18)0.0566 (13)−0.0106 (15)−0.0197 (13)0.0052 (13)
O80.0857 (16)0.1023 (18)0.0622 (13)0.0302 (14)−0.0007 (11)0.0327 (13)
N10.0405 (12)0.0503 (13)0.0541 (13)0.0000 (10)0.0056 (10)0.0075 (11)
N20.0407 (12)0.0596 (14)0.0483 (12)−0.0026 (11)0.0055 (10)0.0087 (11)
N30.0588 (15)0.0641 (16)0.0468 (13)−0.0031 (13)0.0014 (12)0.0015 (11)
N40.0632 (17)0.0517 (15)0.0701 (17)−0.0032 (13)0.0235 (14)0.0057 (13)
N50.0539 (14)0.0647 (16)0.0447 (13)0.0106 (12)0.0054 (11)0.0056 (12)
N60.0634 (15)0.0572 (15)0.0458 (13)0.0082 (12)0.0013 (11)0.0114 (11)
N70.0695 (16)0.0589 (16)0.0513 (15)0.0147 (13)0.0099 (12)0.0185 (13)
N80.0507 (14)0.086 (2)0.0468 (14)0.0045 (14)0.0041 (11)0.0180 (15)
C10.0436 (14)0.0430 (14)0.0459 (14)0.0060 (12)0.0066 (11)0.0081 (12)
C20.0395 (14)0.0403 (14)0.0508 (15)0.0089 (11)0.0069 (11)0.0109 (12)
C30.0467 (15)0.0534 (16)0.0559 (16)0.0097 (13)0.0110 (13)0.0187 (13)
C40.0537 (17)0.0669 (19)0.0502 (16)0.0106 (15)−0.0001 (13)0.0155 (14)
C50.0441 (15)0.0583 (18)0.0625 (18)0.0037 (13)−0.0058 (13)0.0088 (14)
C60.0418 (15)0.0514 (16)0.0577 (17)0.0015 (13)0.0051 (12)0.0120 (13)
C70.0423 (14)0.0480 (16)0.0512 (15)0.0060 (12)0.0058 (12)0.0093 (13)
C80.0425 (14)0.0393 (14)0.0478 (15)0.0030 (12)0.0095 (11)0.0026 (11)
C90.0478 (15)0.0415 (14)0.0425 (14)0.0007 (12)0.0047 (12)0.0006 (11)
C100.0399 (14)0.0411 (15)0.0544 (16)−0.0018 (12)0.0038 (12)−0.0015 (12)
C110.0480 (16)0.0392 (14)0.0545 (16)−0.0011 (12)0.0132 (13)0.0049 (12)
C120.0544 (17)0.0531 (17)0.0491 (15)0.0055 (14)0.0079 (13)0.0095 (13)
C130.0446 (15)0.0510 (16)0.0519 (16)0.0013 (13)0.0005 (12)0.0058 (13)
C140.0407 (15)0.075 (2)0.0496 (16)0.0070 (14)0.0036 (12)0.0078 (15)
C150.0413 (15)0.0687 (19)0.0446 (15)0.0058 (14)0.0084 (12)0.0073 (14)
C160.0589 (18)0.077 (2)0.0512 (17)0.0058 (16)0.0117 (14)0.0091 (16)
C170.067 (2)0.069 (2)0.075 (2)0.0072 (17)0.0198 (17)0.0153 (18)
C180.0606 (19)0.078 (2)0.070 (2)0.0016 (17)0.0130 (16)−0.0064 (18)
C190.0544 (18)0.089 (2)0.0519 (17)0.0091 (17)0.0009 (14)−0.0013 (18)
C200.0517 (16)0.069 (2)0.0442 (16)0.0088 (15)0.0039 (13)0.0126 (14)
C210.0395 (14)0.0584 (17)0.0399 (14)0.0102 (13)0.0087 (11)0.0115 (13)
C220.0455 (15)0.0498 (16)0.0459 (15)0.0095 (13)0.0096 (12)0.0142 (13)
C230.0443 (15)0.0559 (17)0.0440 (15)0.0046 (13)0.0080 (11)0.0074 (13)
C240.0393 (14)0.0624 (18)0.0375 (14)0.0067 (13)0.0046 (11)0.0108 (13)
C250.0495 (16)0.0574 (18)0.0499 (16)0.0083 (14)0.0100 (12)0.0202 (14)
C260.0513 (16)0.0526 (16)0.0499 (16)0.0066 (13)0.0063 (12)0.0082 (13)

Geometric parameters (Å, °)

Cl1—C11.745 (2)C5—H50.9300
Cl2—C141.733 (3)C6—H6A0.9300
O1—N31.229 (3)C7—H70.9300
O2—N31.222 (3)C8—C131.409 (3)
O3—N41.214 (3)C8—C91.413 (3)
O4—N41.220 (3)C9—C101.391 (3)
O5—N71.202 (3)C10—C111.361 (3)
O6—N71.211 (3)C10—H100.9300
O7—N81.224 (3)C11—C121.385 (4)
O8—N81.221 (3)C12—C131.367 (3)
N1—C71.272 (3)C12—H120.9300
N1—N21.368 (3)C13—H130.9300
N2—C81.354 (3)C14—C191.379 (4)
N2—H20.8600C14—C151.399 (4)
N3—O11.229 (3)C15—C161.389 (4)
N3—C91.445 (3)C15—C201.456 (4)
N4—C111.464 (3)C16—C171.374 (4)
N5—C201.275 (3)C16—H160.9300
N5—N61.367 (3)C17—C181.389 (4)
N6—C211.354 (3)C17—H170.9300
N6—H60.8600C18—C191.372 (4)
N7—O61.211 (3)C18—H180.9300
N7—C221.443 (3)C19—H190.9300
N8—C241.456 (3)C20—H200.9300
C1—C61.377 (3)C21—C261.410 (4)
C1—C21.396 (3)C21—C221.414 (4)
C2—C31.389 (3)C22—C231.380 (3)
C2—C71.457 (3)C23—C241.362 (4)
C3—C41.375 (4)C23—H230.9300
C3—H30.9300C24—C251.386 (4)
C4—C51.379 (4)C25—C261.363 (4)
C4—H40.9300C25—H250.9300
C5—C61.376 (4)C26—H260.9300
C7—N1—N2115.0 (2)C11—C10—C9118.5 (2)
C8—N2—N1120.0 (2)C11—C10—H10120.7
C8—N2—H2120.0C9—C10—H10120.7
N1—N2—H2120.0C10—C11—C12122.1 (2)
O2—N3—O1121.8 (2)C10—C11—N4118.6 (2)
O2—N3—O1121.8 (2)C12—C11—N4119.3 (2)
O2—N3—C9118.9 (2)C13—C12—C11119.4 (2)
O1—N3—C9119.2 (2)C13—C12—H12120.3
O1—N3—C9119.2 (2)C11—C12—H12120.3
O3—N4—O4123.9 (3)C12—C13—C8121.5 (2)
O3—N4—C11117.9 (3)C12—C13—H13119.3
O4—N4—C11118.2 (3)C8—C13—H13119.3
C20—N5—N6116.6 (2)C19—C14—C15121.8 (3)
C21—N6—N5119.6 (2)C19—C14—Cl2117.5 (2)
C21—N6—H6120.2C15—C14—Cl2120.7 (2)
N5—N6—H6120.2C16—C15—C14117.1 (3)
O5—N7—O6120.9 (2)C16—C15—C20121.2 (3)
O5—N7—O6120.9 (2)C14—C15—C20121.7 (3)
O5—N7—C22119.6 (2)C17—C16—C15121.6 (3)
O6—N7—C22119.4 (3)C17—C16—H16119.2
O6—N7—C22119.4 (3)C15—C16—H16119.2
O8—N8—O7123.5 (3)C16—C17—C18120.0 (3)
O8—N8—C24118.0 (3)C16—C17—H17120.0
O7—N8—C24118.5 (3)C18—C17—H17120.0
C6—C1—C2121.8 (2)C19—C18—C17119.8 (3)
C6—C1—Cl1118.19 (19)C19—C18—H18120.1
C2—C1—Cl1119.98 (19)C17—C18—H18120.1
C3—C2—C1117.3 (2)C18—C19—C14119.7 (3)
C3—C2—C7120.8 (2)C18—C19—H19120.2
C1—C2—C7121.9 (2)C14—C19—H19120.2
C4—C3—C2121.3 (2)N5—C20—C15120.2 (3)
C4—C3—H3119.4N5—C20—H20119.9
C2—C3—H3119.4C15—C20—H20119.9
C3—C4—C5120.1 (3)N6—C21—C26120.1 (3)
C3—C4—H4120.0N6—C21—C22123.4 (2)
C5—C4—H4120.0C26—C21—C22116.5 (2)
C6—C5—C4120.2 (3)C23—C22—C21121.7 (2)
C6—C5—H5119.9C23—C22—N7115.8 (2)
C4—C5—H5119.9C21—C22—N7122.5 (2)
C1—C6—C5119.3 (2)C24—C23—C22119.3 (3)
C1—C6—H6A120.3C24—C23—H23120.4
C5—C6—H6A120.3C22—C23—H23120.4
N1—C7—C2120.9 (2)C23—C24—C25121.1 (2)
N1—C7—H7119.6C23—C24—N8119.0 (3)
C2—C7—H7119.6C25—C24—N8119.8 (2)
N2—C8—C13120.4 (2)C26—C25—C24119.9 (2)
N2—C8—C9122.8 (2)C26—C25—H25120.0
C13—C8—C9116.8 (2)C24—C25—H25120.0
C10—C9—C8121.7 (2)C25—C26—C21121.4 (3)
C10—C9—N3116.1 (2)C25—C26—H26119.3
C8—C9—N3122.3 (2)C21—C26—H26119.3

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N6—H6···O60.862.022.631 (3)127
N2—H2···O10.862.002.622 (3)129

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2153).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Anderson, O. P., Cour, A. L., Findeisen, M., Hennig, L., Simonsen, O., Taylor, L. & Toflund, H. (1997). J. Chem. Soc. Dalton Trans. pp. 111–120.
  • Baughman, R. G., Martin, K. L., Singh, R. K. & Stoffer, J. O. (2004). Acta Cryst. C60, o103–o106. [PubMed]
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • El-Seify, F. A. & El-Dossoki, F. I. (2006). J. Korean Chem. Soc.50, 99–106.
  • Garnovskii, A. D., Nivorozhkin, A. L. & Minki, V. I. (1993). Coord. Chem. Rev.126, 1–69.
  • Kim, S. Y. & Yoon, N. M. (1998). Bull. Korean Chem. Soc.19, 891–893.
  • Musie, G. T., Wei, M., Subramaniam, B. & Busch, D. H. (2001). Inorg. Chem.40, 3336–3341. [PubMed]
  • Paul, S., Barik, A. K., Peng, S. M. & Kar, S. K. (2002). Inorg. Chem.41, 5803–5809. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, Z.-Q., Ji, N.-N., Zheng, Z.-B. & Li, J.-K. (2007). Acta Cryst. E63, o4561.
  • Zare, H. R., Ardakani, M. M., Nasirizadah, N. & &Safari, J. (2005). Bull. Korean Chem. Soc.26, 51–56.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography