PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): m1361–m1362.
Published online 2008 October 4. doi:  10.1107/S1600536808031553
PMCID: PMC2959773

[N,N,N′,N′-Tetra­kis(benzimidazol-2-yl­meth­yl)cyclo­hexane-1,2-diamine]­nickel(II) dinitrate dihydrate

Abstract

In the title compound, [Ni(C38H38N10)](NO3)2·2H2O, the NiII ion is located on a crystallographic twofold rotation axis and is in a distorted octa­hedral coordination environment. The crystal structure is stablized by inter­molecular N—H(...)O and C—H(...)O hydrogen bonds, and weak C—H(...)π inter­actions. The O atoms of the unique nitrate ion are disordered over two sites with occupancies of 0.63 (1) and 0.37 (1). In addition, the O atom of the unique solvent water mol­ecule is disorded over two sites with equal occupancies.

Related literature

For background information, see: Oki et al. (1996 [triangle]); Hendriks et al. (1982 [triangle]); Main (1992 [triangle]); Zhao et al. (2005 [triangle]). For the structure of the free ligand of the title compound, see: Li et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1361-scheme1.jpg

Experimental

Crystal data

  • [Ni(C38H38N10)](NO3)2·2H2O
  • M r = 853.55
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1361-efi2.jpg
  • a = 15.3395 (16) Å
  • b = 13.1695 (14) Å
  • c = 19.606 (2) Å
  • β = 98.501 (2)°
  • V = 3917.2 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.56 mm−1
  • T = 292 (2) K
  • 0.32 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.840, T max = 0.946
  • 10917 measured reflections
  • 3847 independent reflections
  • 2618 reflections with I > 2σ(I)
  • R int = 0.074

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.133
  • S = 0.95
  • 3847 reflections
  • 303 parameters
  • 65 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT-Plus (Bruker, 2007 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808031553/lh2699sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031553/lh2699Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Science Technology Research Programme of the Education Office of Hubei Province (grant No. Q20082509) for financial support.

supplementary crystallographic information

Comment

N,N,N',N'-Tetrakis(2-benzimidazolymethyl) cyclohexane-1,2-diamine (CTB) is a polybenzimidazole ligand, which has the advantage that the basicity of the coordinating group approximates that of histidine (pKb: histidine = 7.96 and benzimidazole = 8.47; Main, 1992). Recently, studies of ligand CTB and its metal coordination compounds have been widely carried out (Li et al.,2005; Zhao et al., 2005). In a continuation of this work, the title compound, (I), was prepared as part of a series of syntheses to produce new benzimidazole derivatives. We report the crystal stucture of the title compound herein.

In the molecule structure of (I), the NiII ion is located on a crystallographic twofold rotation axis and is is coordinated by four benzimidazolyl(bzim) N atoms and two amino N atoms of the ligand CTB, in a distorted octahedral environment (Fig.1). The amino N atoms are slightly further away from the NiII ion than the benzimidazolyl N atoms. The Ni-N bond lengths are similar to the values reported in a related structure (Oki et al.,1996). As shown in Fig. 2, the crystal structure is stablized by intermolecular N—H···O, C—H···O hydrogen bonds and weak C—H···π interactions.

Experimental

All reagents and solvents were used as obtained without further purification. The ligand CTB was prepared according to literature methods (Hendriks et al., 1982). Compound (I) was synthesized by refluxing stoichiometric quantities (1:1 molar ratio) of CTB (0.64 g, 1 mmol) and nickel(II) dinitrate hexahydrate (0.29 g, 1 mmol) in 95% ethanol (30 ml) at 333 K for 6 h. The solution was cooled to room temperature, filtered and evaporated to obtain the product (yield 72%). Crystals of (I) were grown from an ethanol solution by slow evaporation.

Refinement

In (I), the nitrate O atoms are disordered over two positions with the final refined occupancies of 0.63 (1):0.37 (1). Water atom O4 is also disordered over two positions with both the occupancies being set to 0.5. H atoms bonded to water molecules were not located and were not included in the refinement but are included in the molecular formula. All H atoms (except for H3A) were included in geometrical positions with C—H=0.97 Å (methylene), 0.93Å (aromatic), 0.86Å (imine) and all the Uisovalues were set 1.2 times of their carrier atoms. The positional parameters of atom H3A were refined.

Figures

Fig. 1.
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The nitrate anions, water molecules and H atoms are omitted for clarity [symmetry code: (a) -x, y, -z+3/2].
Fig. 2.
Part of the crystal structure showing the linking of molecules by H-bonding and weak C—H···π interactions as dashed lines.

Crystal data

[Ni(C38H38N10)](NO3)2·2H2OF(000) = 1784
Mr = 853.55Dx = 1.447 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2061 reflections
a = 15.3395 (16) Åθ = 2.4–22.1°
b = 13.1695 (14) ŵ = 0.56 mm1
c = 19.606 (2) ÅT = 292 K
β = 98.501 (2)°Plate, purple
V = 3917.2 (7) Å30.32 × 0.20 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer3847 independent reflections
Radiation source: fine-focus sealed tube2618 reflections with I > 2σ(I)
graphiteRint = 0.074
[var phi] and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −18→17
Tmin = 0.840, Tmax = 0.946k = −10→16
10917 measured reflectionsl = −24→24

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 0.95w = 1/[σ2(Fo2) + (0.0618P)2] where P = (Fo2 + 2Fc2)/3
3847 reflections(Δ/σ)max = 0.001
303 parametersΔρmax = 0.43 e Å3
65 restraintsΔρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Ni10.00000.06922 (5)0.75000.0383 (2)
N10.08499 (16)0.1952 (2)0.79130 (13)0.0411 (7)
N20.03564 (16)0.0758 (2)0.65276 (12)0.0420 (7)
N30.01367 (17)0.1461 (2)0.54912 (12)0.0461 (7)
H3−0.00830.18520.51580.055*
N4−0.11459 (17)−0.0078 (2)0.71196 (12)0.0419 (7)
N5−0.25584 (18)0.0113 (3)0.66910 (14)0.0552 (8)
H5−0.30630.04010.65860.066*
N60.8994 (3)0.3077 (5)0.4093 (3)0.139 (2)
O10.9736 (6)0.2879 (13)0.4445 (5)0.268 (8)0.630 (9)
O20.8880 (3)0.3273 (6)0.3471 (3)0.119 (3)0.630 (9)
O30.8392 (5)0.3165 (5)0.4456 (4)0.142 (3)0.630 (9)
O1'0.9621 (5)0.2465 (7)0.4281 (4)0.058 (3)0.370 (9)
O2'0.9055 (8)0.4029 (8)0.4173 (8)0.161 (7)0.370 (9)
O3'0.8270 (19)0.2712 (14)0.377 (3)0.29 (12)*0.370 (9)
O40.0215 (8)0.4055 (10)0.9433 (5)0.169 (6)0.50 (2)
O4'0.0237 (12)0.491 (2)0.9646 (10)0.279 (12)0.50 (2)
C10.0479 (3)0.4797 (3)0.7444 (2)0.0738 (12)
H1A0.07650.54120.76350.089*
H1B0.05120.47840.69540.089*
C20.0954 (2)0.3874 (3)0.7790 (2)0.0609 (10)
H2A0.15600.38730.77040.073*
H2B0.09580.39160.82840.073*
C30.0508 (2)0.2889 (3)0.75205 (18)0.0454 (8)
H3A0.063 (2)0.280 (2)0.7048 (16)0.054*
C40.0837 (2)0.2029 (3)0.86709 (16)0.0494 (9)
H4A0.13940.17900.89170.059*
H4B0.07670.27340.87950.059*
C50.1735 (2)0.1638 (3)0.77788 (18)0.0492 (9)
H5A0.21890.20390.80520.059*
H5B0.17870.17220.72950.059*
C6−0.0106 (2)0.1420 (3)0.61190 (15)0.0412 (8)
C70.0944 (2)0.0319 (3)0.61274 (15)0.0412 (8)
C80.1581 (2)−0.0419 (3)0.62782 (19)0.0570 (10)
H80.1678−0.07350.67070.068*
C90.2069 (3)−0.0668 (3)0.5766 (2)0.0644 (11)
H90.2502−0.11650.58520.077*
C100.1936 (3)−0.0204 (3)0.51282 (19)0.0658 (11)
H100.2289−0.03860.48010.079*
C110.1299 (2)0.0515 (3)0.49675 (17)0.0561 (10)
H110.12040.08230.45360.067*
C120.0804 (2)0.0764 (3)0.54747 (15)0.0441 (8)
C13−0.1819 (2)0.0548 (3)0.70208 (16)0.0453 (8)
C14−0.2356 (2)−0.0880 (3)0.65533 (18)0.0546 (10)
C15−0.2841 (3)−0.1652 (4)0.6196 (2)0.0793 (14)
H15−0.3432−0.15660.60150.095*
C16−0.2408 (3)−0.2551 (4)0.6122 (2)0.0862 (15)
H16−0.2710−0.30840.58830.103*
C17−0.1518 (3)−0.2677 (3)0.6401 (2)0.0800 (14)
H17−0.1248−0.32980.63460.096*
C18−0.1031 (3)−0.1913 (3)0.67524 (18)0.0601 (10)
H18−0.0439−0.20020.69310.072*
C19−0.1463 (2)−0.1002 (3)0.68280 (16)0.0468 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0387 (4)0.0453 (4)0.0307 (3)0.0000.0044 (2)0.000
N10.0380 (15)0.0490 (17)0.0366 (14)−0.0011 (13)0.0062 (11)0.0024 (13)
N20.0414 (15)0.0507 (17)0.0342 (14)0.0041 (14)0.0066 (11)0.0015 (14)
N30.0536 (17)0.0550 (18)0.0292 (14)0.0030 (15)0.0044 (12)0.0085 (13)
N40.0433 (16)0.0469 (17)0.0347 (15)−0.0039 (14)0.0028 (12)−0.0051 (13)
N50.0393 (17)0.071 (2)0.0544 (19)−0.0096 (16)0.0027 (14)0.0030 (17)
N60.087 (4)0.119 (5)0.203 (8)0.000 (4)−0.007 (5)0.038 (5)
O10.179 (10)0.317 (15)0.290 (14)0.021 (10)−0.025 (9)0.206 (12)
O20.079 (4)0.176 (7)0.097 (4)0.031 (4)−0.003 (3)0.091 (5)
O30.127 (6)0.125 (6)0.191 (7)0.023 (5)0.082 (5)−0.025 (5)
O1'0.052 (5)0.076 (6)0.044 (4)0.027 (4)0.005 (3)0.023 (4)
O2'0.115 (9)0.170 (13)0.184 (13)0.027 (9)−0.025 (8)0.000 (10)
O40.239 (11)0.123 (10)0.149 (8)0.023 (7)0.043 (7)−0.076 (6)
O4'0.311 (17)0.28 (2)0.247 (17)0.064 (15)0.042 (12)0.007 (16)
C10.084 (3)0.050 (2)0.088 (3)−0.011 (2)0.013 (3)−0.001 (2)
C20.061 (2)0.053 (2)0.069 (3)−0.011 (2)0.012 (2)−0.003 (2)
C30.0481 (19)0.045 (2)0.0440 (19)−0.0006 (17)0.0101 (16)0.0002 (17)
C40.047 (2)0.059 (2)0.0403 (19)−0.0071 (18)0.0007 (15)−0.0039 (17)
C50.0388 (19)0.058 (2)0.050 (2)−0.0037 (17)0.0064 (15)0.0022 (18)
C60.0418 (18)0.047 (2)0.0339 (17)−0.0018 (16)0.0043 (14)−0.0007 (16)
C70.0434 (18)0.047 (2)0.0335 (17)−0.0016 (16)0.0075 (14)−0.0021 (15)
C80.060 (2)0.063 (3)0.049 (2)0.013 (2)0.0106 (18)0.0008 (19)
C90.063 (2)0.073 (3)0.059 (2)0.017 (2)0.0133 (19)−0.008 (2)
C100.060 (3)0.094 (3)0.047 (2)−0.002 (2)0.0188 (19)−0.017 (2)
C110.059 (2)0.075 (3)0.0358 (18)−0.004 (2)0.0118 (17)−0.0019 (19)
C120.0461 (19)0.051 (2)0.0345 (17)−0.0066 (18)0.0051 (14)−0.0027 (16)
C130.0402 (19)0.059 (2)0.0372 (18)−0.0065 (18)0.0069 (14)0.0005 (17)
C140.052 (2)0.068 (3)0.044 (2)−0.016 (2)0.0081 (17)0.0011 (19)
C150.073 (3)0.094 (4)0.069 (3)−0.042 (3)0.005 (2)−0.005 (3)
C160.105 (4)0.079 (4)0.073 (3)−0.048 (3)0.010 (3)−0.014 (3)
C170.121 (4)0.055 (3)0.067 (3)−0.024 (3)0.023 (3)−0.009 (2)
C180.076 (3)0.058 (3)0.046 (2)−0.008 (2)0.0063 (19)−0.0029 (19)
C190.057 (2)0.053 (2)0.0319 (17)−0.0085 (18)0.0091 (15)0.0018 (16)

Geometric parameters (Å, °)

Ni1—N22.061 (2)C2—H2B0.9700
Ni1—N2i2.062 (2)C3—C3i1.549 (6)
Ni1—N42.071 (3)C3—H3A0.98 (3)
Ni1—N4i2.071 (3)C4—C6i1.485 (4)
Ni1—N1i2.190 (3)C4—H4A0.9700
Ni1—N12.190 (3)C4—H4B0.9700
N1—C51.479 (4)C5—C13i1.489 (5)
N1—C41.493 (4)C5—H5A0.9700
N1—C31.506 (4)C5—H5B0.9700
N2—C61.318 (4)C6—C4i1.485 (4)
N2—C71.404 (4)C7—C81.379 (5)
N3—C61.339 (4)C7—C121.395 (4)
N3—C121.378 (4)C8—C91.378 (5)
N3—H30.8600C8—H80.9300
N4—C131.313 (4)C9—C101.378 (5)
N4—C191.400 (4)C9—H90.9300
N5—C131.348 (4)C10—C111.364 (5)
N5—C141.379 (5)C10—H100.9300
N5—H50.8600C11—C121.378 (4)
N6—O21.233 (6)C11—H110.9300
N6—O31.252 (6)C13—C5i1.489 (5)
N6—O2'1.265 (8)C14—C151.387 (5)
N6—O1'1.267 (7)C14—C191.405 (5)
N6—O11.268 (7)C15—C161.375 (7)
N6—O3'1.286 (9)C15—H150.9300
O4'—O4'ii1.68 (4)C16—C171.403 (6)
C1—C1i1.519 (8)C16—H160.9300
C1—C21.524 (5)C17—C181.376 (5)
C1—H1A0.9700C17—H170.9300
C1—H1B0.9700C18—C191.389 (5)
C2—C31.524 (5)C18—H180.9300
C2—H2A0.9700
N2—Ni1—N2i175.20 (15)C2—C3—C3i114.5 (2)
N2—Ni1—N490.83 (10)N1—C3—H3A106.6 (19)
N2i—Ni1—N491.53 (10)C2—C3—H3A106.6 (19)
N2—Ni1—N4i91.53 (10)C3i—C3—H3A106.6 (19)
N2i—Ni1—N4i90.82 (10)C6i—C4—N1111.2 (3)
N4—Ni1—N4i121.31 (16)C6i—C4—H4A109.4
N2—Ni1—N1i81.44 (10)N1—C4—H4A109.4
N2i—Ni1—N1i94.90 (10)C6i—C4—H4B109.4
N4—Ni1—N1i79.11 (10)N1—C4—H4B109.4
N4i—Ni1—N1i158.69 (11)H4A—C4—H4B108.0
N2—Ni1—N194.90 (10)N1—C5—C13i105.6 (3)
N2i—Ni1—N181.43 (10)N1—C5—H5A110.6
N4—Ni1—N1158.69 (10)C13i—C5—H5A110.6
N4i—Ni1—N179.11 (10)N1—C5—H5B110.6
N1i—Ni1—N181.47 (14)C13i—C5—H5B110.6
C5—N1—C4110.1 (2)H5A—C5—H5B108.8
C5—N1—C3113.4 (2)N2—C6—N3112.8 (3)
C4—N1—C3113.5 (3)N2—C6—C4i123.3 (3)
C5—N1—Ni1103.5 (2)N3—C6—C4i123.8 (3)
C4—N1—Ni1108.93 (19)C8—C7—C12120.1 (3)
C3—N1—Ni1106.76 (18)C8—C7—N2131.6 (3)
C6—N2—C7105.4 (3)C12—C7—N2108.3 (3)
C6—N2—Ni1113.4 (2)C9—C8—C7117.1 (3)
C7—N2—Ni1141.2 (2)C9—C8—H8121.5
C6—N3—C12107.6 (3)C7—C8—H8121.5
C6—N3—H3126.2C8—C9—C10122.2 (4)
C12—N3—H3126.2C8—C9—H9118.9
C13—N4—C19105.5 (3)C10—C9—H9118.9
C13—N4—Ni1110.6 (2)C11—C10—C9121.4 (3)
C19—N4—Ni1142.9 (2)C11—C10—H10119.3
C13—N5—C14107.4 (3)C9—C10—H10119.3
C13—N5—H5126.3C10—C11—C12116.8 (3)
C14—N5—H5126.3C10—C11—H11121.6
O2—N6—O3122.3 (5)C12—C11—H11121.6
O2—N6—O2'85.0 (9)C11—C12—N3131.8 (3)
O3—N6—O2'83.4 (9)C11—C12—C7122.4 (3)
O2—N6—O1'114.3 (7)N3—C12—C7105.8 (3)
O3—N6—O1'119.1 (7)N4—C13—N5113.0 (3)
O2'—N6—O1'123.7 (6)N4—C13—C5i122.1 (3)
O2—N6—O1124.5 (6)N5—C13—C5i124.8 (3)
O3—N6—O1112.8 (6)N5—C14—C15132.4 (4)
O2'—N6—O195.3 (11)N5—C14—C19105.5 (3)
O2'—N6—O3'118.3 (7)C15—C14—C19122.0 (4)
O1'—N6—O3'117.9 (7)C16—C15—C14116.9 (4)
O1—N6—O3'146.2 (13)C16—C15—H15121.5
C1i—C1—C2110.1 (3)C14—C15—H15121.5
C1i—C1—H1A109.6C15—C16—C17121.2 (5)
C2—C1—H1A109.6C15—C16—H16119.4
C1i—C1—H1B109.6C17—C16—H16119.4
C2—C1—H1B109.6C18—C17—C16122.3 (5)
H1A—C1—H1B108.1C18—C17—H17118.9
C3—C2—C1111.4 (3)C16—C17—H17118.9
C3—C2—H2A109.4C17—C18—C19116.9 (4)
C1—C2—H2A109.4C17—C18—H18121.6
C3—C2—H2B109.4C19—C18—H18121.6
C1—C2—H2B109.4C18—C19—N4130.6 (3)
H2A—C2—H2B108.0C18—C19—C14120.8 (4)
N1—C3—C2114.5 (3)N4—C19—C14108.5 (3)
N1—C3—C3i107.3 (2)
N2—Ni1—N1—C5−55.5 (2)Ni1—N1—C5—C13i−44.1 (3)
N2i—Ni1—N1—C5127.6 (2)C7—N2—C6—N3−0.9 (4)
N4—Ni1—N1—C5−160.6 (2)Ni1—N2—C6—N3179.5 (2)
N4i—Ni1—N1—C535.10 (19)C7—N2—C6—C4i177.3 (3)
N1i—Ni1—N1—C5−136.1 (2)Ni1—N2—C6—C4i−2.3 (4)
N2—Ni1—N1—C4−172.7 (2)C12—N3—C6—N20.9 (4)
N2i—Ni1—N1—C410.5 (2)C12—N3—C6—C4i−177.3 (3)
N4—Ni1—N1—C482.3 (3)C6—N2—C7—C8−179.7 (4)
N4i—Ni1—N1—C4−82.0 (2)Ni1—N2—C7—C8−0.2 (6)
N1i—Ni1—N1—C4106.8 (2)C6—N2—C7—C120.5 (4)
N2—Ni1—N1—C364.4 (2)Ni1—N2—C7—C12180.0 (3)
N2i—Ni1—N1—C3−112.4 (2)C12—C7—C8—C91.3 (5)
N4—Ni1—N1—C3−40.6 (3)N2—C7—C8—C9−178.5 (3)
N4i—Ni1—N1—C3155.1 (2)C7—C8—C9—C100.3 (6)
N1i—Ni1—N1—C3−16.12 (14)C8—C9—C10—C11−1.3 (6)
N4—Ni1—N2—C674.0 (2)C9—C10—C11—C120.8 (6)
N4i—Ni1—N2—C6−164.6 (2)C10—C11—C12—N3178.2 (4)
N1i—Ni1—N2—C6−4.9 (2)C10—C11—C12—C70.8 (5)
N1—Ni1—N2—C6−85.4 (2)C6—N3—C12—C11−178.2 (4)
N4—Ni1—N2—C7−105.4 (3)C6—N3—C12—C7−0.5 (4)
N4i—Ni1—N2—C715.9 (3)C8—C7—C12—C11−1.9 (5)
N1i—Ni1—N2—C7175.7 (4)N2—C7—C12—C11178.0 (3)
N1—Ni1—N2—C795.1 (3)C8—C7—C12—N3−179.8 (3)
N2—Ni1—N4—C13−98.7 (2)N2—C7—C12—N30.0 (4)
N2i—Ni1—N4—C1377.1 (2)C19—N4—C13—N50.4 (4)
N4i—Ni1—N4—C13169.0 (2)Ni1—N4—C13—N5171.9 (2)
N1i—Ni1—N4—C13−17.6 (2)C19—N4—C13—C5i−176.2 (3)
N1—Ni1—N4—C137.0 (4)Ni1—N4—C13—C5i−4.6 (4)
N2—Ni1—N4—C1967.7 (3)C14—N5—C13—N4−0.7 (4)
N2i—Ni1—N4—C19−116.5 (3)C14—N5—C13—C5i175.7 (3)
N4i—Ni1—N4—C19−24.6 (3)C13—N5—C14—C15−175.8 (4)
N1i—Ni1—N4—C19148.8 (3)C13—N5—C14—C190.7 (4)
N1—Ni1—N4—C19173.5 (3)N5—C14—C15—C16176.1 (4)
C1i—C1—C2—C357.5 (5)C19—C14—C15—C160.1 (6)
C5—N1—C3—C2−73.2 (4)C14—C15—C16—C170.4 (6)
C4—N1—C3—C253.5 (4)C15—C16—C17—C18−0.8 (7)
Ni1—N1—C3—C2173.5 (2)C16—C17—C18—C190.7 (6)
C5—N1—C3—C3i158.5 (3)C17—C18—C19—N4−176.0 (3)
C4—N1—C3—C3i−74.8 (3)C17—C18—C19—C14−0.1 (5)
Ni1—N1—C3—C3i45.2 (3)C13—N4—C19—C18176.4 (3)
C1—C2—C3—N1−171.0 (3)Ni1—N4—C19—C189.6 (6)
C1—C2—C3—C3i−46.4 (5)C13—N4—C19—C140.1 (3)
C5—N1—C4—C6i−126.7 (3)Ni1—N4—C19—C14−166.7 (3)
C3—N1—C4—C6i104.9 (3)N5—C14—C19—C18−177.2 (3)
Ni1—N1—C4—C6i−13.8 (3)C15—C14—C19—C18−0.3 (5)
C4—N1—C5—C13i72.2 (3)N5—C14—C19—N4−0.5 (4)
C3—N1—C5—C13i−159.4 (3)C15—C14—C19—N4176.5 (3)

Symmetry codes: (i) −x, y, −z+3/2; (ii) −x, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3···O1iii0.861.942.774 (10)165
N5—H5···O2iv0.862.142.923 (7)151
C4—H4B···O40.972.373.268 (12)154
C11—H11···Cg1v0.932.733.542147
C16—H16···Cg2vi0.932.793.680160

Symmetry codes: (iii) x−1, y, z; (iv) −x+1/2, −y+1/2, −z+1; (v) x+1/2, y+1/2, z+1; (vi) −x−1, −y−1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2699).

References

  • Bruker (2007). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hendriks, M. J., Birker, J. M. W. L., van Rijn, J., Verschoor, G. C. & Reedijk, J. (1982). J. Am. Chem. Soc.104, 3607–3617.
  • Li, J., Meng, X.-G. & Liao, Z.-R. (2005). Acta Cryst. E61, o3421–o3423.
  • Main, F. (1992). Coord. Chem. Rev.120, 325–359.
  • Oki, A. R., Sanchez, J., Morgan, R. J. & Ngai, L. (1996). Transition Met. Chem.21, 43–48.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Zhao, X.-Z., Meng, X.-G. & Liao, Z.-R. (2005). Chem. J. Chin. Univ.26, 1194–1197.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography