PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): m1386.
Published online 2008 October 11. doi:  10.1107/S1600536808032297
PMCID: PMC2959772

catena-Poly[[[2,6-bis­(pyrazol-1-yl-κN 2)pyridine-κN 1](nitrato-κ2 O,O′)cadmium(II)]-μ-thio­cyanato-κ2 N:S]

Abstract

In the title crystal structure, [Cd(NCS)(NO3)(C11H9N5)]n, the unique CdII ion is coordinated in a distorted penta­gonal–bipyramidal environment. The axial thio­cyanate ligands act in a μ1,3-bridging mode to connect symmetry-related CdII ions into one-dimensional chains along [010]. In addition, there are inter­molecular C—H(...)O contacts between chains.

Related literature

For background information, see: Halcrow (2005 [triangle]); Shi et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1386-scheme1.jpg

Experimental

Crystal data

  • [Cd(NCS)(NO3)(C11H9N5)]
  • M r = 443.72
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1386-efi7.jpg
  • a = 8.4161 (15) Å
  • b = 11.817 (2) Å
  • c = 15.631 (3) Å
  • β = 99.673 (2)°
  • V = 1532.5 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.59 mm−1
  • T = 298 (2) K
  • 0.18 × 0.15 × 0.11 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.763, T max = 0.845
  • 8813 measured reflections
  • 3335 independent reflections
  • 2710 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.074
  • S = 1.02
  • 3335 reflections
  • 217 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.53 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808032297/lh2703sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808032297/lh2703Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Doctor’s Foundation of Binzhou University.

supplementary crystallographic information

Comment

Both the 2,6-bis(pyrazolyl)pyridine and thiocyanate ligands play an important role in modern coordination chemistry (Halcrow 2005; Shi et al. 2006), and our interest in complexes formed with these ligands led us to prepare the title complex and determine its crystal structure (I).

As shown in Fig. 1 the CdII ion is coordinated in a distorted pentagonal–bipyramidal environment with the 2,6-bis(pyrazolyl)pyridine and nitrate anion acting as chelating tridentate and bidentate ligands, respectively. The axial thiocyantate ligands bridge symmetry-related CdII ions [with a Cd···Cd separation of 6.1817 (10) Å] to form a one-dimensional `zigzag' chain along the b axis (Fig. 2). In addition, the crystal structure contains C—H···O and C—H···S short contacts between chains.

Experimental

A 15 ml methanol solution containing 2,6-bis(pyrazolyl)pyridine (0.4140 g, 0.196 mmol) was added to 8 ml H2O solution of Cd(NO3)26H2O (0.0689 g, 0.200 mmol) and NaSCN (0.0324 g, 0.400 mmol), and the mixture was stirred for a few minutes. Colorless single crystals were obtained after the filtrate was allowed to stand at room temperature for a month.

Refinement

All H atoms were placed in calculated positions with C—H = 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
View of part of the structure of (I), with displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) -x + 3/2, y + 1/2, -z + 1/2; (ii) -x + 3/2, y - 1/2, -z + 1/2.]
Fig. 2.
Part of the one-dimensional chain of (I).

Crystal data

[Cd(NCS)(NO3)(C11H9N5)]F(000) = 872
Mr = 443.72Dx = 1.923 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2732 reflections
a = 8.4161 (15) Åθ = 2.2–24.8°
b = 11.817 (2) ŵ = 1.59 mm1
c = 15.631 (3) ÅT = 298 K
β = 99.673 (2)°Block, colourless
V = 1532.5 (5) Å30.18 × 0.15 × 0.11 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer3335 independent reflections
Radiation source: fine-focus sealed tube2710 reflections with I > 2σ(I)
graphiteRint = 0.034
[var phi] and ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→7
Tmin = 0.763, Tmax = 0.845k = −15→14
8813 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0324P)2] where P = (Fo2 + 2Fc2)/3
3335 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.53 e Å3
1 restraintΔρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.8278 (4)0.8449 (3)0.3362 (2)0.0413 (8)
C20.3464 (4)0.7893 (3)0.1478 (2)0.0507 (9)
H20.30420.76890.19680.061*
C30.2736 (5)0.8650 (3)0.0850 (3)0.0582 (11)
H30.17690.90340.08400.070*
C40.3722 (5)0.8708 (3)0.0265 (3)0.0550 (10)
H40.35690.9151−0.02340.066*
C50.6374 (4)0.7813 (2)0.01605 (19)0.0399 (8)
C60.6570 (5)0.8277 (3)−0.0627 (2)0.0558 (10)
H60.57650.8708−0.09550.067*
C70.8005 (6)0.8073 (3)−0.0903 (2)0.0654 (12)
H70.81870.8386−0.14230.078*
C80.9175 (5)0.7420 (3)−0.0429 (2)0.0596 (11)
H81.01530.7286−0.06120.071*
C90.8833 (4)0.6968 (3)0.0337 (2)0.0428 (8)
C101.1325 (5)0.5770 (3)0.0743 (3)0.0666 (12)
H101.18040.58610.02530.080*
C111.1898 (5)0.5134 (3)0.1447 (3)0.0705 (12)
H111.28340.47010.15380.085*
C121.0793 (5)0.5266 (3)0.2001 (3)0.0633 (11)
H121.08850.49230.25430.076*
Cd10.69811 (3)0.631846 (17)0.194115 (13)0.03553 (9)
N10.9587 (4)0.5939 (2)0.16692 (19)0.0501 (7)
N20.9920 (4)0.6253 (2)0.08807 (19)0.0468 (7)
N30.7484 (3)0.7163 (2)0.06248 (15)0.0370 (6)
N40.4991 (3)0.8004 (2)0.05286 (16)0.0389 (6)
N50.4831 (3)0.7503 (2)0.12873 (16)0.0416 (6)
N60.7831 (5)0.7729 (3)0.29035 (19)0.0716 (12)
N70.6367 (3)0.5128 (2)0.34211 (16)0.0410 (6)
O10.6028 (3)0.4666 (2)0.40633 (16)0.0704 (8)
O20.7776 (3)0.5144 (2)0.32709 (14)0.0483 (6)
O30.5296 (3)0.5612 (2)0.28825 (14)0.0552 (6)
S10.89559 (11)0.94486 (6)0.40588 (5)0.0430 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.049 (2)0.0320 (17)0.0409 (17)0.0047 (15)0.0013 (15)0.0078 (14)
C20.049 (2)0.0420 (19)0.061 (2)0.0077 (17)0.0092 (18)−0.0019 (16)
C30.042 (2)0.045 (2)0.083 (3)0.0052 (17)−0.007 (2)−0.0069 (19)
C40.056 (2)0.0379 (19)0.063 (2)0.0029 (18)−0.015 (2)0.0093 (16)
C50.052 (2)0.0279 (15)0.0362 (16)−0.0140 (15)−0.0035 (15)0.0005 (13)
C60.074 (3)0.048 (2)0.0410 (19)−0.017 (2)−0.0016 (19)0.0085 (16)
C70.094 (3)0.064 (3)0.0368 (19)−0.031 (3)0.007 (2)0.0046 (18)
C80.069 (3)0.061 (2)0.055 (2)−0.026 (2)0.029 (2)−0.0149 (19)
C90.050 (2)0.0376 (18)0.0404 (17)−0.0173 (17)0.0064 (16)−0.0060 (14)
C100.047 (2)0.063 (3)0.095 (3)−0.014 (2)0.027 (2)−0.032 (2)
C110.041 (2)0.053 (2)0.115 (4)0.005 (2)0.006 (2)−0.024 (3)
C120.047 (2)0.057 (2)0.080 (3)0.010 (2)−0.007 (2)−0.010 (2)
Cd10.04344 (16)0.03132 (14)0.03132 (13)0.00301 (10)0.00483 (10)0.00214 (9)
N10.0439 (18)0.0509 (16)0.0541 (18)0.0074 (15)0.0047 (14)0.0011 (14)
N20.0382 (17)0.0452 (16)0.0589 (18)−0.0105 (13)0.0133 (14)−0.0136 (13)
N30.0421 (17)0.0308 (13)0.0372 (13)−0.0067 (12)0.0037 (12)0.0000 (11)
N40.0430 (17)0.0294 (13)0.0402 (14)−0.0014 (12)−0.0045 (12)0.0026 (11)
N50.0474 (18)0.0340 (14)0.0419 (15)−0.0001 (13)0.0032 (13)0.0025 (11)
N60.116 (3)0.0365 (17)0.0525 (18)0.0005 (18)−0.015 (2)−0.0097 (14)
N70.0462 (18)0.0433 (15)0.0339 (14)0.0003 (14)0.0076 (13)−0.0010 (12)
O10.078 (2)0.0841 (19)0.0511 (15)−0.0113 (16)0.0165 (14)0.0281 (14)
O20.0494 (15)0.0532 (15)0.0416 (11)0.0051 (12)0.0056 (11)0.0075 (9)
O30.0491 (15)0.0758 (17)0.0407 (13)0.0098 (13)0.0080 (11)0.0087 (12)
S10.0561 (6)0.0331 (4)0.0364 (4)−0.0018 (4)−0.0015 (4)−0.0006 (3)

Geometric parameters (Å, °)

C1—N61.135 (4)C10—C111.352 (6)
C1—S11.642 (4)C10—N21.362 (5)
C2—N51.319 (4)C10—H100.9300
C2—C31.391 (5)C11—C121.383 (6)
C2—H20.9300C11—H110.9300
C3—C41.336 (6)C12—N11.325 (4)
C3—H30.9300C12—H120.9300
C4—N41.362 (4)Cd1—N62.279 (3)
C4—H40.9300Cd1—N12.346 (3)
C5—N31.327 (4)Cd1—O32.361 (2)
C5—C61.383 (4)Cd1—N52.379 (3)
C5—N41.400 (4)Cd1—N32.388 (2)
C6—C71.370 (6)Cd1—O22.495 (2)
C6—H60.9300Cd1—S1i2.7447 (9)
C7—C81.367 (5)N1—N21.360 (4)
C7—H70.9300N4—N51.352 (3)
C8—C91.385 (5)N7—O11.218 (3)
C8—H80.9300N7—O21.247 (3)
C9—N31.310 (4)N7—O31.262 (3)
C9—N21.418 (4)S1—Cd1ii2.7447 (9)
N6—C1—S1177.5 (3)O3—Cd1—N589.01 (9)
N5—C2—C3111.3 (4)N6—Cd1—N3100.47 (10)
N5—C2—H2124.3N1—Cd1—N367.50 (9)
C3—C2—H2124.3O3—Cd1—N3153.74 (9)
C4—C3—C2105.4 (4)N5—Cd1—N367.41 (9)
C4—C3—H3127.3N6—Cd1—O281.17 (9)
C2—C3—H3127.3N1—Cd1—O285.22 (9)
C3—C4—N4107.9 (3)O3—Cd1—O252.36 (8)
C3—C4—H4126.1N5—Cd1—O2139.77 (9)
N4—C4—H4126.1N3—Cd1—O2152.71 (9)
N3—C5—C6122.5 (4)N6—Cd1—S1i173.33 (8)
N3—C5—N4115.2 (3)N1—Cd1—S1i86.04 (7)
C6—C5—N4122.3 (3)O3—Cd1—S1i85.71 (6)
C7—C6—C5117.0 (4)N5—Cd1—S1i95.98 (6)
C7—C6—H6121.5N3—Cd1—S1i85.49 (6)
C5—C6—H6121.5O2—Cd1—S1i92.16 (6)
C8—C7—C6121.4 (4)C12—N1—N2105.0 (3)
C8—C7—H7119.3C12—N1—Cd1136.2 (3)
C6—C7—H7119.3N2—N1—Cd1116.9 (2)
C7—C8—C9116.8 (4)N1—N2—C10110.1 (3)
C7—C8—H8121.6N1—N2—C9119.7 (3)
C9—C8—H8121.6C10—N2—C9130.1 (4)
N3—C9—C8123.2 (3)C9—N3—C5119.0 (3)
N3—C9—N2114.0 (3)C9—N3—Cd1120.8 (2)
C8—C9—N2122.8 (3)C5—N3—Cd1120.2 (2)
C11—C10—N2107.8 (4)N5—N4—C4110.1 (3)
C11—C10—H10126.1N5—N4—C5120.2 (2)
N2—C10—H10126.1C4—N4—C5129.6 (3)
C10—C11—C12105.1 (4)C2—N5—N4105.3 (3)
C10—C11—H11127.4C2—N5—Cd1137.6 (2)
C12—C11—H11127.4N4—N5—Cd1117.0 (2)
N1—C12—C11111.9 (4)C1—N6—Cd1177.7 (3)
N1—C12—H12124.0O1—N7—O2121.5 (3)
C11—C12—H12124.0O1—N7—O3120.9 (3)
N6—Cd1—N193.43 (12)O2—N7—O3117.6 (3)
N6—Cd1—O390.12 (11)N7—O2—Cd191.99 (17)
N1—Cd1—O3136.31 (9)N7—O3—Cd198.02 (19)
N6—Cd1—N589.13 (10)C1—S1—Cd1ii99.61 (11)
N1—Cd1—N5134.53 (10)
N5—C2—C3—C4−0.1 (4)N6—Cd1—N3—C5−87.3 (2)
C2—C3—C4—N40.5 (4)N1—Cd1—N3—C5−176.7 (2)
N3—C5—C6—C7−2.4 (5)O3—Cd1—N3—C524.9 (3)
N4—C5—C6—C7177.1 (3)N5—Cd1—N3—C5−2.70 (19)
C5—C6—C7—C81.4 (5)O2—Cd1—N3—C5−178.35 (18)
C6—C7—C8—C90.6 (5)S1i—Cd1—N3—C595.7 (2)
C7—C8—C9—N3−1.8 (5)C3—C4—N4—N5−0.7 (4)
C7—C8—C9—N2178.5 (3)C3—C4—N4—C5−176.5 (3)
N2—C10—C11—C12−0.4 (4)N3—C5—N4—N5−2.6 (4)
C10—C11—C12—N10.3 (4)C6—C5—N4—N5178.0 (3)
C11—C12—N1—N2−0.1 (4)N3—C5—N4—C4172.9 (3)
C11—C12—N1—Cd1162.7 (3)C6—C5—N4—C4−6.6 (5)
N6—Cd1—N1—C1290.2 (3)C3—C2—N5—N4−0.3 (4)
O3—Cd1—N1—C12−3.6 (4)C3—C2—N5—Cd1175.3 (2)
N5—Cd1—N1—C12−177.6 (3)C4—N4—N5—C20.6 (3)
N3—Cd1—N1—C12−169.9 (4)C5—N4—N5—C2176.9 (3)
O2—Cd1—N1—C129.4 (3)C4—N4—N5—Cd1−176.07 (19)
S1i—Cd1—N1—C12−83.1 (3)C5—N4—N5—Cd10.2 (3)
N6—Cd1—N1—N2−108.5 (2)N6—Cd1—N5—C2−72.3 (3)
O3—Cd1—N1—N2157.76 (18)N1—Cd1—N5—C2−166.3 (3)
N5—Cd1—N1—N2−16.3 (3)O3—Cd1—N5—C217.8 (3)
N3—Cd1—N1—N2−8.6 (2)N3—Cd1—N5—C2−174.1 (3)
O2—Cd1—N1—N2170.7 (2)O2—Cd1—N5—C22.8 (4)
S1i—Cd1—N1—N278.2 (2)S1i—Cd1—N5—C2103.4 (3)
C12—N1—N2—C10−0.1 (4)N6—Cd1—N5—N4102.9 (2)
Cd1—N1—N2—C10−166.9 (2)N1—Cd1—N5—N49.0 (3)
C12—N1—N2—C9178.6 (3)O3—Cd1—N5—N4−166.94 (19)
Cd1—N1—N2—C911.9 (3)N3—Cd1—N5—N41.21 (18)
C11—C10—N2—N10.4 (4)O2—Cd1—N5—N4178.12 (16)
C11—C10—N2—C9−178.3 (3)S1i—Cd1—N5—N4−81.36 (19)
N3—C9—N2—N1−7.0 (4)O1—N7—O2—Cd1−177.4 (3)
C8—C9—N2—N1172.7 (3)O3—N7—O2—Cd12.5 (3)
N3—C9—N2—C10171.5 (3)N6—Cd1—O2—N795.51 (19)
C8—C9—N2—C10−8.8 (5)N1—Cd1—O2—N7−170.26 (18)
C8—C9—N3—C50.9 (4)O3—Cd1—O2—N7−1.52 (16)
N2—C9—N3—C5−179.3 (2)N5—Cd1—O2—N717.5 (2)
C8—C9—N3—Cd1178.9 (2)N3—Cd1—O2—N7−168.76 (17)
N2—C9—N3—Cd1−1.3 (3)S1i—Cd1—O2—N7−84.41 (17)
C6—C5—N3—C91.3 (4)O1—N7—O3—Cd1177.2 (3)
N4—C5—N3—C9−178.2 (3)O2—N7—O3—Cd1−2.7 (3)
C6—C5—N3—Cd1−176.8 (2)N6—Cd1—O3—N7−77.21 (19)
N4—C5—N3—Cd13.7 (3)N1—Cd1—O3—N717.9 (2)
N6—Cd1—N3—C994.7 (2)N5—Cd1—O3—N7−166.34 (18)
N1—Cd1—N3—C95.3 (2)N3—Cd1—O3—N7168.29 (17)
O3—Cd1—N3—C9−153.0 (2)O2—Cd1—O3—N71.52 (16)
N5—Cd1—N3—C9179.3 (2)S1i—Cd1—O3—N797.59 (17)
O2—Cd1—N3—C93.7 (3)N6—C1—S1—Cd1ii179 (100)
S1i—Cd1—N3—C9−82.3 (2)

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) −x+3/2, y+1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···O1iii0.932.503.412 (5)167
C4—H4···O2iv0.932.473.370 (4)164
C7—H7···O3v0.932.523.312 (5)143
C10—H10···S1v0.932.833.723 (4)160

Symmetry codes: (iii) −x+1/2, y+1/2, −z+1/2; (iv) x−1/2, −y+3/2, z−1/2; (v) x+1/2, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2703).

References

  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Halcrow, M. A. (2005). Coord. Chem. Rev.249, 2880–2908.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, J. M., Sun, Y. M., Liu, Z., Liu, L. D., Shi, W. & Cheng, P. (2006). Dalton Trans. pp. 376–380. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography