PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2146.
Published online 2008 October 22. doi:  10.1107/S1600536808033825
PMCID: PMC2959771

(E)-Methyl N′-(2-furylmethyl­ene)­hydrazinecarboxyl­ate

Abstract

The title compound, C7H8N2O3, crystallizes with two independent but essentially identical mol­ecules in the asymmetric unit. Each mol­ecule adopts a trans configuration with respect to the C=N bond. The hydrazinecarboxyl­ate group is twisted from the furan ring by 7.78 (13)° in one mol­ecule and by 7.01 (17)° in the other. In the crystal structure, mol­ecules are linked into chains running along [010] by bifurcated N—H(...)(N,O) and N—H(...)O hydrogen bonds. In addition, weak C—H(...)O inter­actions and an O(...)C short contact [2.896 (3) Å] are observed.

Related literature

For general background, see: Parashar et al. (1988 [triangle]); Hadjoudis et al. (1987 [triangle]); Borg et al. (1999 [triangle]); Kahwa et al. (1986 [triangle]); Santos et al. (2001 [triangle]). For a related structure, see: Shang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2146-scheme1.jpg

Experimental

Crystal data

  • C7H8N2O3
  • M r = 168.15
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2146-efi1.jpg
  • a = 14.9185 (17) Å
  • b = 7.8124 (9) Å
  • c = 15.1299 (19) Å
  • β = 105.251 (7)°
  • V = 1701.3 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 193 (2) K
  • 0.19 × 0.17 × 0.16 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.978, T max = 0.982
  • 4679 measured reflections
  • 1601 independent reflections
  • 1399 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.085
  • S = 1.07
  • 1601 reflections
  • 218 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.10 e Å−3
  • Δρmin = −0.09 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808033825/ci2688sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808033825/ci2688Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Hangzhou Vocational and Technical College, China, for financial support.

supplementary crystallographic information

Comment

Benzaldehydehydrazone derivatives have attracted much attention due to their pharmacological activity (Parashar et al., 1988) and their photochromic properties (Hadjoudis et al., 1987). They are important intermidiates of 1,3,4-oxadiazoles, which have been reported to be versatile compounds with many interesting properties (Borg et al., 1999). Metal complexes based on Schiff bases have received considerable attention because they can be utilized as model compounds of active centres in various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). We report here the crystal structure of the title compound (Fig. 1).

The title compound contains two independent, but essentially identical molecules in the asymmetric unit. Each independent molecule adopts a trans configuration with respect to the C═N bond. The N1/N2/O2/O3/C6/C7 and N3/N4/O5/O6/C13/C14 planes form dihedral angles of 7.78 (13) and 7.01 (17)°, respectively, with the O1/C1–C4 and O4/C8–C11 planes. The dihedral angle between the two independent furan rings is 85.17 (11)°. The bond lengths and angles are comparable to those observed for methyl N'-[(E)-4-methoxybenzylidene]hydrazinecarboxylate (Shang et al., 2007).

In the crystal structure, the molecules are linked into chains running along the [010] by N—H···O and N—H···N hydrogen bonds (Table 1 and Fig.2). In addition, weak C—H···O interactions and an O4···C5 short contact [2.896 (3) Å] are also observed.

Experimental

Furfuraldehyde (0.96 g, 0.01 mol) and methyl hydrazinecarboxylate (0.90 g, 0.01 mol) were dissolved in stirred methanol (20 ml) and left for 3 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 85% yield. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 408–413 K).

Refinement

H atoms were positioned geometrically (N—H = 0.86 Å and C—H = 0.93 or 0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl). In the absence of significant anomalous scattering effects, Friedel pairs were averaged.

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.
Fig. 2.
Crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C7H8N2O3F(000) = 704
Mr = 168.15Dx = 1.313 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 1601 reflections
a = 14.9185 (17) Åθ = 1.4–25.0°
b = 7.8124 (9) ŵ = 0.10 mm1
c = 15.1299 (19) ÅT = 193 K
β = 105.251 (7)°Block, colourless
V = 1701.3 (4) Å30.19 × 0.17 × 0.16 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer1601 independent reflections
Radiation source: fine-focus sealed tube1399 reflections with I > 2σ(I)
graphiteRint = 0.020
[var phi] and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Bruker, 2002)h = −17→17
Tmin = 0.978, Tmax = 0.982k = −9→8
4679 measured reflectionsl = −17→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.085w = 1/[σ2(Fo2) + (0.0464P)2 + 0.2178P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1601 reflectionsΔρmax = 0.10 e Å3
218 parametersΔρmin = −0.09 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0051 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.6802 (2)0.5242 (5)−0.0094 (2)0.0834 (9)
H10.69850.4241−0.03300.100*
C20.6239 (2)0.6570 (6)−0.0595 (2)0.0971 (12)
H20.59690.6590−0.12230.117*
C30.6170 (2)0.7771 (6)0.0000 (2)0.1020 (12)
H30.58500.8797−0.01520.122*
C40.70165 (17)0.5730 (4)0.07936 (17)0.0617 (7)
C50.75360 (16)0.4883 (3)0.16066 (17)0.0583 (6)
H50.77690.37920.15610.070*
C60.83278 (17)0.5270 (4)0.39638 (18)0.0600 (6)
C70.8972 (3)0.4683 (6)0.5526 (2)0.1191 (15)
H7A0.92690.37730.59220.179*
H7B0.84110.50100.56810.179*
H7C0.93830.56480.56000.179*
C80.5302 (2)0.2842 (6)0.1389 (3)0.1233 (17)
H80.51390.38840.10930.148*
C90.4711 (2)0.1714 (5)0.1540 (3)0.0977 (11)
H90.40670.18010.13680.117*
C100.52379 (19)0.0344 (5)0.2012 (2)0.0786 (8)
H100.5006−0.06420.22160.094*
C110.61376 (17)0.0724 (3)0.21148 (18)0.0615 (7)
C120.69799 (17)−0.0134 (3)0.25482 (16)0.0586 (6)
H120.6952−0.12480.27560.070*
C130.93793 (17)0.0282 (4)0.32608 (17)0.0609 (6)
C141.0967 (2)−0.0296 (6)0.3959 (3)0.1240 (16)
H14A1.1351−0.11780.43070.186*
H14B1.10470.07430.43110.186*
H14C1.1143−0.01050.34000.186*
N10.76861 (13)0.5587 (3)0.23906 (14)0.0552 (5)
N20.81642 (15)0.4606 (3)0.31122 (14)0.0652 (6)
H2A0.83550.35970.30250.078*
N30.77726 (14)0.0577 (3)0.26606 (14)0.0596 (5)
N40.85235 (15)−0.0392 (3)0.31071 (16)0.0692 (6)
H40.8447−0.14140.32860.083*
O10.66343 (14)0.7290 (3)0.08659 (13)0.0860 (7)
O20.81342 (12)0.6698 (2)0.41521 (12)0.0673 (5)
O30.87484 (17)0.4105 (3)0.45826 (13)0.0932 (7)
O40.61942 (13)0.2275 (3)0.17282 (18)0.1027 (8)
O50.95630 (12)0.1665 (2)0.30007 (12)0.0699 (5)
O60.99994 (13)−0.0822 (3)0.37459 (16)0.0895 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0933 (19)0.090 (2)0.0653 (18)−0.024 (2)0.0181 (15)−0.0164 (18)
C20.090 (2)0.131 (3)0.0597 (19)−0.034 (2)0.0009 (16)0.004 (2)
C30.097 (2)0.118 (3)0.080 (2)0.012 (2)0.0033 (18)0.024 (2)
C40.0599 (13)0.0630 (19)0.0627 (17)−0.0120 (13)0.0170 (11)−0.0070 (14)
C50.0606 (12)0.0503 (16)0.0669 (16)−0.0080 (11)0.0217 (11)−0.0033 (13)
C60.0688 (14)0.0525 (16)0.0598 (16)0.0034 (12)0.0191 (11)0.0131 (13)
C70.186 (4)0.101 (3)0.063 (2)0.045 (3)0.021 (2)0.022 (2)
C80.0559 (16)0.103 (3)0.200 (4)0.0057 (19)0.014 (2)0.072 (3)
C90.0562 (15)0.102 (3)0.129 (3)−0.0063 (18)0.0139 (16)0.034 (3)
C100.0716 (16)0.0723 (18)0.088 (2)−0.0234 (16)0.0139 (14)0.0125 (16)
C110.0673 (15)0.0484 (16)0.0684 (16)−0.0082 (12)0.0168 (12)0.0072 (13)
C120.0711 (15)0.0428 (14)0.0618 (15)−0.0042 (12)0.0172 (11)0.0016 (11)
C130.0668 (15)0.0493 (15)0.0629 (15)0.0061 (13)0.0108 (11)0.0055 (13)
C140.0683 (19)0.096 (3)0.185 (4)0.0045 (19)−0.007 (2)0.036 (3)
N10.0628 (11)0.0452 (12)0.0577 (13)−0.0017 (9)0.0159 (9)0.0039 (10)
N20.0882 (15)0.0433 (11)0.0659 (14)0.0111 (11)0.0237 (11)0.0071 (11)
N30.0637 (12)0.0448 (12)0.0693 (13)0.0024 (10)0.0158 (10)0.0078 (10)
N40.0663 (12)0.0437 (11)0.0940 (16)0.0038 (10)0.0148 (11)0.0182 (12)
O10.0971 (14)0.0878 (16)0.0700 (13)0.0182 (12)0.0162 (10)0.0062 (11)
O20.0868 (12)0.0485 (11)0.0639 (11)0.0061 (10)0.0154 (9)0.0031 (9)
O30.1460 (19)0.0685 (15)0.0641 (12)0.0357 (14)0.0256 (12)0.0230 (11)
O40.0575 (10)0.0748 (14)0.171 (2)−0.0016 (10)0.0218 (12)0.0520 (15)
O50.0733 (10)0.0521 (11)0.0783 (12)−0.0049 (10)0.0092 (9)0.0131 (10)
O60.0698 (11)0.0645 (14)0.1240 (17)0.0081 (10)0.0075 (11)0.0283 (13)

Geometric parameters (Å, °)

C1—C41.351 (4)C8—H80.93
C1—C21.421 (6)C9—C101.406 (5)
C1—H10.93C9—H90.93
C2—C31.322 (6)C10—C111.343 (4)
C2—H20.93C10—H100.93
C3—O11.364 (4)C11—O41.357 (3)
C3—H30.93C11—C121.423 (3)
C4—O11.362 (4)C12—N31.277 (3)
C4—C51.432 (4)C12—H120.93
C5—N11.273 (3)C13—O51.206 (3)
C5—H50.93C13—O61.334 (3)
C6—O21.206 (4)C13—N41.344 (3)
C6—O31.337 (3)C14—O61.454 (4)
C6—N21.350 (3)C14—H14A0.96
C7—O31.450 (4)C14—H14B0.96
C7—H7A0.96C14—H14C0.96
C7—H7B0.96N1—N21.370 (3)
C7—H7C0.96N2—H2A0.86
C8—C91.309 (5)N3—N41.373 (3)
C8—O41.368 (4)N4—H40.86
C4—C1—C2106.0 (3)C11—C10—C9107.4 (3)
C4—C1—H1127.0C11—C10—H10126.3
C2—C1—H1127.0C9—C10—H10126.3
C3—C2—C1107.2 (3)C10—C11—O4108.7 (3)
C3—C2—H2126.4C10—C11—C12133.1 (3)
C1—C2—H2126.4O4—C11—C12118.1 (2)
C2—C3—O1110.3 (4)N3—C12—C11122.1 (2)
C2—C3—H3124.8N3—C12—H12119.0
O1—C3—H3124.8C11—C12—H12119.0
C1—C4—O1109.7 (3)O5—C13—O6125.1 (2)
C1—C4—C5131.0 (3)O5—C13—N4125.6 (2)
O1—C4—C5119.2 (2)O6—C13—N4109.4 (2)
N1—C5—C4121.6 (2)O6—C14—H14A109.5
N1—C5—H5119.2O6—C14—H14B109.5
C4—C5—H5119.2H14A—C14—H14B109.5
O2—C6—O3124.2 (3)O6—C14—H14C109.5
O2—C6—N2125.9 (2)H14A—C14—H14C109.5
O3—C6—N2109.9 (3)H14B—C14—H14C109.5
O3—C7—H7A109.5C5—N1—N2115.3 (2)
O3—C7—H7B109.5C6—N2—N1118.1 (2)
H7A—C7—H7B109.5C6—N2—H2A120.9
O3—C7—H7C109.5N1—N2—H2A120.9
H7A—C7—H7C109.5C12—N3—N4115.6 (2)
H7B—C7—H7C109.5C13—N4—N3118.9 (2)
C9—C8—O4110.5 (3)C13—N4—H4120.5
C9—C8—H8124.8N3—N4—H4120.5
O4—C8—H8124.8C4—O1—C3106.7 (3)
C8—C9—C10106.8 (3)C6—O3—C7114.9 (3)
C8—C9—H9126.6C11—O4—C8106.6 (2)
C10—C9—H9126.6C13—O6—C14116.3 (2)
C4—C1—C2—C31.7 (4)C5—N1—N2—C6−178.6 (2)
C1—C2—C3—O1−1.6 (4)C11—C12—N3—N4178.7 (2)
C2—C1—C4—O1−1.1 (3)O5—C13—N4—N3−3.8 (4)
C2—C1—C4—C5177.6 (3)O6—C13—N4—N3176.4 (2)
C1—C4—C5—N1178.0 (3)C12—N3—N4—C13−179.1 (2)
O1—C4—C5—N1−3.3 (3)C1—C4—O1—C30.2 (3)
O4—C8—C9—C100.8 (6)C5—C4—O1—C3−178.8 (2)
C8—C9—C10—C11−0.6 (5)C2—C3—O1—C40.9 (4)
C9—C10—C11—O40.1 (4)O2—C6—O3—C7−0.4 (4)
C9—C10—C11—C12178.3 (3)N2—C6—O3—C7179.2 (3)
C10—C11—C12—N3−171.0 (3)C10—C11—O4—C80.3 (4)
O4—C11—C12—N37.0 (4)C12—C11—O4—C8−178.1 (3)
C4—C5—N1—N2177.8 (2)C9—C8—O4—C11−0.7 (5)
O2—C6—N2—N1−4.2 (4)O5—C13—O6—C14−0.8 (5)
O3—C6—N2—N1176.2 (2)N4—C13—O6—C14179.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O50.862.363.138 (3)151
N2—H2A···N30.862.523.242 (3)141
N4—H4···O2i0.862.112.913 (3)156
C2—H2···O5ii0.932.603.521 (4)172
C10—H10···O5iii0.932.593.508 (4)171

Symmetry codes: (i) x, y−1, z; (ii) −x+3/2, y+1/2, −z; (iii) x−1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2688).

References

  • Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem.42, 4331–4342. [PubMed]
  • Bruker (2002). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345–1360.
  • Kahwa, I. A., Selbin, J., Hsieh, T. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 151, 201–208.
  • Parashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201–208.
  • Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.
  • Shang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography