PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): m1394.
Published online 2008 October 15. doi:  10.1107/S1600536808032303
PMCID: PMC2959770

Bis{2-[(E)-benzyl­imino­meth­yl]-4,6-dibromo­phenolato-κ2 N,O}cobalt(II)

Abstract

In the title compound, [Co(C14H10Br2NO)2], the CoII ion is coordinated by an O and an N atom from two equivalent 2-[(E)-benzyl­imino­meth­yl]-4,6-dibromo­phenolate ligands, displaying a distorted tetra­hedral geometry. The CoII ion occupies a special position on a twofold rotation axis and thus the mol­ecular symmetry of the complex is C 2. The two phenolate rings are perpendicular [89.8 (3)°].

Related literature

For general background on the applications of Schiff bases, see: Vigato et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1394-scheme1.jpg

Experimental

Crystal data

  • [Co(C14H10Br2NO)2]
  • M r = 795.03
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1394-efi1.jpg
  • a = 23.875 (3) Å
  • b = 4.8190 (6) Å
  • c = 24.209 (3) Å
  • β = 105.8730 (1)°
  • V = 2679.1 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 6.64 mm−1
  • T = 296 (2) K
  • 0.30 × 0.26 × 0.22 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.165, T max = 0.232
  • 11046 measured reflections
  • 3094 independent reflections
  • 2627 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.172
  • S = 1.07
  • 3094 reflections
  • 168 parameters
  • H-atom parameters constrained
  • Δρmax = 0.98 e Å−3
  • Δρmin = −1.46 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: XP in SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808032303/kp2194sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808032303/kp2194Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Starting Fund for the Doctoral Program of Maoming University for financial support.

supplementary crystallographic information

Comment

The Schiff bases are widely employed as ligands in coordination chemistry. The advantages of Schiff bases enable their use in the synthesis of metal complexes of interest in bioinorganic chemistry, catalysis, encapsulation, transport and separation processes, and magnetochemistry (Choi & Jeon, 2003). Salicylaldehyde and its derivatives are useful carbonyl precursors for the synthesis of a large variety of Schiff bases. In this paper we report on a new cobalt(II) complex (I).

In the title complex CoII atom is tetrahedrally coordinated by two O atoms and two N atoms from two 2-((E)-(benzylimino)methyl)-4,6-dibromophenol bidentate chelating ligand. The Co1—O1 distance of 1.935 (4) Å is shorter than the distance of Co1—N1 (2.005 (4) Å) (Table 1). The dihedral angle between two phenol rings is 89.8 (3)°.

Experimental

To a solution containing 2 mmol (0.738 g) 2-((E)-(benzylimino)methyl)-4,6-dibromophenol dissolved in 20 mL ethanol, 1 mmol of CoCl2.6H2O (0.238 g) were added, and the resulting mixture was stirred for about 1 h. The slow evaporisation of the solvent after about 3 d yielded dark brown single crystals. Yield: 51.4%. Calcd. for C28H20Br4CoN2O2: C, 42.30; H, 2.54; N, 3.52; Found: C, 42.24; H, 3.41; N,3.46%.

Refinement

All H atoms were located from difference Fourier syntheses, H atoms from the C—H groups were placed in geometrically idealized positions and constrained to ride on their parent atoms (C—H = 0.93 Å, 0.96 Å, 0.97 Å) and Uiso(H) values equal to 1.2 Ueq(C).

Figures

Fig. 1.
The structure of (I), showing displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (i) -x, y, -z+0.5]

Crystal data

[Co(C14H10Br2NO)2]F(000) = 1540
Mr = 795.03Dx = 1.971 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2269 reflections
a = 23.875 (3) Åθ = 1.0–27.7°
b = 4.8190 (6) ŵ = 6.64 mm1
c = 24.209 (3) ÅT = 296 K
β = 105.873 (1)°Block, brown
V = 2679.1 (6) Å30.30 × 0.26 × 0.22 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer3094 independent reflections
Radiation source: fine-focus sealed tube2627 reflections with I > 2σ(I)
graphiteRint = 0.027
[var phi] and ω scansθmax = 27.7°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)h = −30→30
Tmin = 0.165, Tmax = 0.232k = −6→6
11046 measured reflectionsl = −30→31

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.1045P)2 + 20.5054P] where P = (Fo2 + 2Fc2)/3
3094 reflections(Δ/σ)max < 0.001
168 parametersΔρmax = 0.98 e Å3
0 restraintsΔρmin = −1.45 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.00000.9824 (2)0.25000.0481 (3)
Br10.25733 (3)0.73207 (15)0.14570 (3)0.0446 (2)
Br20.06423 (3)1.45190 (13)0.09822 (2)0.0389 (2)
O10.04168 (16)1.1622 (8)0.20173 (16)0.0316 (8)
N1−0.06936 (19)0.7651 (9)0.20554 (18)0.0269 (9)
C10.0898 (2)1.0738 (10)0.1927 (2)0.0260 (10)
C20.1095 (2)1.1793 (11)0.1464 (2)0.0285 (10)
C30.1595 (2)1.0865 (12)0.1339 (2)0.0313 (11)
H3A0.17071.16210.10320.038*
C40.1925 (2)0.8813 (13)0.1672 (2)0.0321 (11)
C50.1772 (2)0.7738 (12)0.2136 (2)0.0336 (11)
H5A0.20050.63950.23640.040*
C60.1268 (2)0.8649 (12)0.2269 (2)0.0281 (10)
C7−0.1144 (2)0.7334 (12)0.2242 (2)0.0309 (11)
H7A−0.14250.61060.20370.037*
C8−0.0702 (3)0.6166 (12)0.1512 (2)0.0327 (11)
H8A−0.09340.44920.14820.039*
H8B−0.03090.56310.15170.039*
C9−0.0954 (3)0.7997 (11)0.1000 (2)0.0320 (11)
C10−0.1555 (3)0.8139 (16)0.0759 (3)0.0483 (16)
H10A−0.18070.70550.09010.058*
C11−0.1773 (4)0.9955 (19)0.0296 (3)0.059 (2)
H11A−0.21741.00610.01370.071*
C12−0.1433 (4)1.1523 (16)0.0075 (3)0.0555 (19)
H12A−0.15931.2715−0.02290.067*
C13−0.0827 (4)1.1356 (17)0.0309 (3)0.0533 (17)
H13A−0.05811.24260.01570.064*
C14−0.0597 (3)0.9608 (14)0.0764 (3)0.0420 (14)
H14A−0.01950.95040.09150.050*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0443 (5)0.0596 (6)0.0428 (5)0.0000.0163 (4)0.000
Br10.0289 (3)0.0637 (4)0.0467 (4)0.0012 (2)0.0197 (3)−0.0043 (3)
Br20.0460 (4)0.0389 (3)0.0348 (3)0.0015 (2)0.0160 (3)0.0099 (2)
O10.0320 (19)0.039 (2)0.0299 (19)0.0049 (16)0.0186 (16)0.0067 (16)
N10.027 (2)0.033 (2)0.021 (2)0.0010 (16)0.0071 (17)0.0003 (16)
C10.028 (2)0.030 (2)0.022 (2)−0.0039 (19)0.0092 (19)−0.0012 (18)
C20.033 (3)0.031 (3)0.024 (2)−0.006 (2)0.011 (2)−0.0022 (19)
C30.032 (3)0.038 (3)0.028 (3)−0.010 (2)0.014 (2)−0.005 (2)
C40.026 (2)0.042 (3)0.032 (3)−0.004 (2)0.012 (2)−0.006 (2)
C50.027 (3)0.044 (3)0.029 (3)0.001 (2)0.006 (2)0.000 (2)
C60.026 (2)0.038 (3)0.022 (2)−0.002 (2)0.0078 (19)−0.001 (2)
C70.027 (3)0.042 (3)0.023 (2)−0.004 (2)0.006 (2)−0.003 (2)
C80.041 (3)0.034 (3)0.025 (2)0.006 (2)0.013 (2)−0.002 (2)
C90.045 (3)0.031 (3)0.023 (2)0.001 (2)0.013 (2)−0.0074 (19)
C100.043 (4)0.061 (4)0.042 (4)0.007 (3)0.014 (3)0.004 (3)
C110.048 (4)0.076 (5)0.046 (4)0.016 (4)0.000 (3)0.003 (4)
C120.084 (6)0.051 (4)0.025 (3)0.005 (4)0.005 (3)0.001 (3)
C130.065 (5)0.056 (4)0.036 (3)−0.011 (4)0.010 (3)0.006 (3)
C140.044 (3)0.052 (4)0.029 (3)−0.007 (3)0.008 (3)0.000 (2)

Geometric parameters (Å, °)

Co1—O1i1.935 (4)C6—C7i1.441 (7)
Co1—O11.935 (4)C7—C6i1.441 (7)
Co1—N12.005 (4)C7—H7A0.9300
Co1—N1i2.005 (4)C8—C91.505 (8)
Br1—C41.902 (5)C8—H8A0.9700
Br2—C21.888 (6)C8—H8B0.9700
O1—C11.298 (6)C9—C141.388 (8)
N1—C71.285 (7)C9—C101.396 (9)
N1—C81.493 (7)C10—C111.404 (11)
C1—C21.424 (7)C10—H10A0.9300
C1—C61.442 (7)C11—C121.323 (12)
C2—C31.383 (7)C11—H11A0.9300
C3—C41.379 (8)C12—C131.405 (11)
C3—H3A0.9300C12—H12A0.9300
C4—C51.376 (8)C13—C141.375 (10)
C5—C61.399 (8)C13—H13A0.9300
C5—H5A0.9300C14—H14A0.9300
O1i—Co1—O1126.8 (2)N1—C7—C6i127.9 (5)
O1i—Co1—N194.16 (17)N1—C7—H7A116.0
O1—Co1—N1113.29 (17)C6i—C7—H7A116.0
O1i—Co1—N1i113.29 (17)N1—C8—C9110.5 (4)
O1—Co1—N1i94.16 (17)N1—C8—H8A109.6
N1—Co1—N1i117.1 (3)C9—C8—H8A109.6
C1—O1—Co1125.4 (3)N1—C8—H8B109.6
C7—N1—C8116.2 (5)C9—C8—H8B109.6
C7—N1—Co1121.4 (4)H8A—C8—H8B108.1
C8—N1—Co1122.3 (4)C14—C9—C10118.5 (6)
O1—C1—C2120.9 (5)C14—C9—C8121.1 (6)
O1—C1—C6124.4 (4)C10—C9—C8120.5 (6)
C2—C1—C6114.7 (4)C9—C10—C11118.6 (7)
C3—C2—C1123.3 (5)C9—C10—H10A120.7
C3—C2—Br2118.2 (4)C11—C10—H10A120.7
C1—C2—Br2118.6 (4)C12—C11—C10123.0 (7)
C4—C3—C2119.6 (5)C12—C11—H11A118.5
C4—C3—H3A120.2C10—C11—H11A118.5
C2—C3—H3A120.2C11—C12—C13118.8 (7)
C5—C4—C3120.6 (5)C11—C12—H12A120.6
C5—C4—Br1120.0 (5)C13—C12—H12A120.6
C3—C4—Br1119.3 (4)C14—C13—C12120.0 (7)
C4—C5—C6120.6 (5)C14—C13—H13A120.0
C4—C5—H5A119.7C12—C13—H13A120.0
C6—C5—H5A119.7C13—C14—C9121.2 (7)
C5—C6—C7i115.6 (5)C13—C14—H14A119.4
C5—C6—C1121.2 (5)C9—C14—H14A119.4
C7i—C6—C1123.2 (5)

Symmetry codes: (i) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2194).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vigato, P.A., Tamburini, S. & Bertolo, L. (2007). Coord. Chem. Rev.251, 1311–1316.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography