PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): m1434.
Published online 2008 October 18. doi:  10.1107/S1600536808033114
PMCID: PMC2959767

(Acetato-κO)(2-{[2-(dimethyl­amino)­ethyl­imino](phen­yl)meth­yl}-5-methoxy­phenolato-κ3 N,N′,O 1)copper(II)

Abstract

The CuII atom in the title complex, [Cu(C18H21N2O2)(C2H3O2)], is tetra­coordinated by two N atoms and two O atoms, of which one O atom is attributed to the acetate group and the other atoms are from the tridentate salicylideneiminate ligand, forming a slight distorted square-planar environment. The other acetate O atom exhibits a very weak intra­molecular inter­action toward the Cu atom, the Cu—O distance of 2.771 (2) Å being shorter than the van der Waals radii for Cu and O atoms (2.92 Å). Furthermore, there are weak inter­molecular inter­actions, in which the bonding O atom of the acetate group can bridge to the Cu atom of another complex, and the distance of 2.523 (2) Å is about 0.4 Å shorter than the van der Waals Cu—O distance in other crystal structures.

Related literature

For general background, see: Coates & Moore (2004 [triangle]); Darensbourg et al. (2001 [triangle]); Inoue et al. (1969 [triangle]); Shen et al. (2003 [triangle]). For related structures, see: Chen et al. (2006 [triangle]); Luo et al. (1998 [triangle], 1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1434-scheme1.jpg

Experimental

Crystal data

  • [Cu(C18H21N2O2)(C2H3O2)]
  • M r = 419.96
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1434-efi1.jpg
  • a = 11.9721 (16) Å
  • b = 15.674 (2) Å
  • c = 10.6346 (14) Å
  • β = 102.655 (3)°
  • V = 1947.1 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.15 mm−1
  • T = 293 (2) K
  • 0.40 × 0.30 × 0.20 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.656, T max = 0.803
  • 11008 measured reflections
  • 3822 independent reflections
  • 2673 reflections with I > 2σ(I)
  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.103
  • S = 1.02
  • 3822 reflections
  • 244 parameters
  • H-atom parameters constrained
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 1999 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808033114/rk2108sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808033114/rk2108Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge financial support in part from the National Science Council, Taiwan, and in part from the project of specific research fields in Chung Yuan Christian University, Taiwan (No. CYCU-97-CR-CH).

supplementary crystallographic information

Comment

Carbon dioxide is the most abundant carbon resource in the atmosphere and is used by green plants and anaerobic bacteria for chemical production on a massive scale. In contrast, industrial and laboratory utilization of CO2 as a chemical feedstock is rare. The reuse and recovery of CO2 have received much attention from the viewpoint of carbon resources and environmental problems during the last two decades of the twentieth century. In particular, the catalytic coupling of CO2 with heterocycles has been discovered and investigated over the past 35 years (Inoue et al., 1969). One of the major successes is the utilization of epoxides and CO2 as starting materials to prepare the polycarbonates and/or cyclic carbonates in the presence of a transition metal catalyst. However, only a few metals, including Al, Cr, Co, Mg, Li, Zn, Cu, and Cd (Coates & Moore, 2004) are active for the coupling of epoxides and CO2. Recently, Darensbourg et al., (2001) disclosed the synthesis, characterization and catalytic studies of a number of bis(salicylaldiminato)zinc complexes, in which the most active catalyst for co–polymerization of cyclohexene oxide and CO2 giving poly(cyclohexene carbonate) (>99% carbonate linkages, Mn = 41000 g.mol-1, Mw/Mn = 10.3) with a turnover frequency of 6.9 h-1. In addition, Shen et al. (2003) reported that binaphthyldiaminosalen–type Zn, Cu, and Co complexes efficiently catalyzed reactions of epoxides with CO2 to achieve five–membered ring cyclic carbonates in the presence of various catalytic amounts of organic bases. Most recently, Chen et al., (2006) has synthesized a series of Schiff base zinc complexes which have shown high activity in the ring–opening poymerization of lactide (Chen et al., 2006). We report herein the synthesis and crystal structure study of a N,N,O–tridentate Schiff base CuII complex (I), a potential catalyst for CO2/epoxide coupling copolymerization (Fig. 1).

The solid structure of I reveals a monomeric CuII complex (Fig. 1) containing a six–member and five–member ring coordinated from the tridentate salicylideneiminate ligand. The geometry around Cu atom is tetracoordinated with a slight distorted square planar environment in which two nitrogen atoms and two oxygen atoms are almost coplanar. The sums of bond angles around Cu center are 359.7 (1)°. The distances between the Cu atom and O1, O3, N1 and N2 are 1.908 (2), 1.968 (2), 2.073 (3), 1.969 (3)Å, respectively. These bond distances are similar to those found in other Schiff base CuII complexes (Luo et al., 1998). The other acetate's oxygen, O4 shows very weak intramolecular contact with Cu (Cu···O4 = 2.771 (2)Å) in comparison with Van der Waals contact (2.92Å) for Cu···O. In addition, there are weak intermolecular interactions, in which the bonding oxygen (O3) of acetate group can be bridged to the Cu atom of another complex and the distance (2.523 (2) Å) is about 0.4 Å shorter than Van der Waals contact of Cu···O in the other crystal structure.

Experimental

The ligand, 5–methoxy–2–{1–[2–(dimethylamino)ethylimino]benzyl}phenol was prepared by the reaction in which 2–dimethylaminoethylamine (1.95 g, 22.1 mmol) and 5–methoxy–2–hydroxybenzophenone (4.60 g, 20.2 mmol) in refluxed ethanol (30 ml) for 24 h (Fig. 2). Volatile materials were removed under vacuum and the resulting solid was recrystallized from slowly cooling a hot hexane (40 ml) solution giving yellow powders (yield: 71%). The title complex was synthesized by the following procedures: 5–methoxy–2–{1–[2–(dimethylamino)ethylimino]benzyl}phenol (0.597 g, 2.0 mmol) and Cu(OAc)2.2H2O (0.398 g, 2.0 mmol) was refluxed in EtOH (30 ml) for 3 h and the volatile materials were removed under vacuum giving green crystalline solid (Fig. 2). The resulting precipitate was crystallized from EtOH to yield green crystals.

Refinement

The C–bound H atoms were placed in calculated positions (C—H = 0.93-0.96 Å) and included in the refinement in the riding–model approximation, with Uiso(H) = 1.2 or 1.5Ueq(C).

Figures

Fig. 1.
A view of the molecular structure of I with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
Fig. 2.
The synthetic route of the title Cu complex.

Crystal data

[Cu(C18H21N2O2)(C2H3O2)]F(000) = 876
Mr = 419.96Dx = 1.433 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3118 reflections
a = 11.9721 (16) Åθ = 2.2–25.4°
b = 15.674 (2) ŵ = 1.15 mm1
c = 10.6346 (14) ÅT = 293 K
β = 102.655 (3)°Prism, green
V = 1947.1 (4) Å30.40 × 0.30 × 0.20 mm
Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer3822 independent reflections
Radiation source: Fine–focus sealed tube2673 reflections with I > 2σ(I)
GraphiteRint = 0.049
[var phi] and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −14→14
Tmin = 0.656, Tmax = 0.803k = −18→19
11008 measured reflectionsl = −8→13

Refinement

Refinement on F2Primary atom site location: Direct
Least-squares matrix: FullSecondary atom site location: Difmap
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: Geom
wR(F2) = 0.103H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.05P)2] where P = (Fo2 + 2Fc2)/3
3822 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = −0.40 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu0.93747 (3)0.10053 (2)0.02371 (4)0.02773 (13)
O10.92068 (16)0.06311 (14)0.1893 (2)0.0332 (5)
O20.7404 (2)−0.04350 (17)0.5113 (2)0.0474 (6)
O31.09237 (16)0.05131 (13)0.0552 (2)0.0303 (5)
O41.1426 (2)0.17945 (16)0.1343 (2)0.0467 (6)
N10.7889 (2)0.15948 (18)−0.0052 (3)0.0379 (7)
N20.9457 (2)0.15348 (17)−0.1526 (3)0.0333 (6)
C10.8276 (2)0.05790 (19)0.2325 (3)0.0268 (7)
C20.8331 (3)0.0119 (2)0.3478 (3)0.0327 (7)
H2A0.9021−0.01320.38800.039*
C30.7400 (3)0.0029 (2)0.4025 (3)0.0355 (8)
C40.6361 (3)0.0424 (2)0.3444 (3)0.0434 (9)
H4A0.57330.03860.38250.052*
C50.6277 (3)0.0858 (2)0.2337 (4)0.0392 (8)
H5A0.55810.11120.19670.047*
C60.7199 (2)0.0949 (2)0.1702 (3)0.0290 (7)
C70.7052 (3)0.1444 (2)0.0533 (3)0.0321 (7)
C80.5879 (2)0.1779 (2)−0.0065 (3)0.0348 (8)
C90.5162 (3)0.1296 (3)−0.0985 (4)0.0603 (12)
H9A0.53960.0757−0.11890.072*
C100.4106 (3)0.1598 (3)−0.1607 (4)0.0675 (13)
H10A0.36350.1267−0.22320.081*
C110.3748 (3)0.2386 (3)−0.1307 (4)0.0581 (11)
H11A0.30380.2593−0.17330.070*
C120.4432 (3)0.2866 (3)−0.0384 (4)0.0635 (12)
H12A0.41810.3397−0.01690.076*
C130.5505 (3)0.2568 (3)0.0241 (4)0.0527 (10)
H13A0.59700.29020.08680.063*
C140.7695 (3)0.2182 (3)−0.1169 (4)0.0592 (12)
H14A0.73700.2715−0.09520.071*
H14B0.71670.1929−0.18960.071*
C150.8852 (3)0.2344 (2)−0.1512 (4)0.0535 (10)
H15A0.87370.2613−0.23520.064*
H15B0.93060.2726−0.08830.064*
C160.8860 (3)0.0981 (3)−0.2608 (4)0.0561 (11)
H16A0.89060.1237−0.34150.084*
H16B0.80710.0918−0.25670.084*
H16C0.92190.0430−0.25390.084*
C171.0606 (3)0.1696 (3)−0.1764 (4)0.0522 (10)
H17A1.05350.1941−0.26060.078*
H17B1.10200.1169−0.17170.078*
H17C1.10110.2084−0.11260.078*
C180.8349 (3)−0.1007 (3)0.5543 (4)0.0537 (10)
H18A0.8254−0.12960.63090.081*
H18B0.9050−0.06880.57260.081*
H18C0.8372−0.14180.48810.081*
C191.1673 (3)0.1069 (2)0.1073 (3)0.0329 (7)
C201.2906 (3)0.0780 (3)0.1325 (4)0.0571 (12)
H20A1.33960.12370.17130.086*
H20B1.30960.06200.05250.086*
H20C1.30080.02980.18960.086*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu0.0244 (2)0.0309 (2)0.0274 (2)0.00498 (16)0.00454 (14)0.00588 (17)
O10.0233 (11)0.0480 (14)0.0286 (13)0.0067 (10)0.0060 (9)0.0079 (10)
O20.0479 (14)0.0579 (18)0.0401 (15)−0.0047 (12)0.0181 (11)0.0103 (13)
O30.0234 (10)0.0327 (13)0.0332 (13)−0.0008 (9)0.0027 (9)0.0013 (10)
O40.0470 (15)0.0407 (16)0.0502 (17)0.0011 (12)0.0061 (12)−0.0130 (12)
N10.0352 (15)0.0444 (19)0.0333 (17)0.0152 (13)0.0055 (12)0.0123 (13)
N20.0354 (15)0.0289 (16)0.0344 (17)0.0033 (12)0.0053 (12)0.0072 (12)
C10.0257 (15)0.0265 (17)0.0271 (18)−0.0019 (12)0.0034 (13)−0.0033 (13)
C20.0295 (16)0.037 (2)0.0309 (19)0.0011 (14)0.0042 (13)0.0023 (14)
C30.0411 (19)0.035 (2)0.032 (2)−0.0092 (15)0.0106 (15)−0.0030 (15)
C40.0347 (19)0.050 (2)0.052 (2)0.0000 (16)0.0217 (16)0.0017 (19)
C50.0282 (17)0.040 (2)0.050 (2)0.0031 (14)0.0106 (15)0.0002 (17)
C60.0242 (15)0.0284 (18)0.0334 (18)0.0011 (13)0.0039 (13)−0.0032 (14)
C70.0293 (16)0.0291 (19)0.036 (2)0.0068 (13)0.0024 (14)−0.0061 (15)
C80.0277 (17)0.041 (2)0.033 (2)0.0092 (14)0.0008 (14)0.0031 (15)
C90.041 (2)0.059 (3)0.071 (3)0.0148 (19)−0.011 (2)−0.026 (2)
C100.043 (2)0.077 (3)0.069 (3)0.013 (2)−0.017 (2)−0.021 (2)
C110.0314 (19)0.070 (3)0.065 (3)0.0144 (19)−0.0067 (18)0.011 (2)
C120.045 (2)0.049 (3)0.090 (3)0.0256 (19)0.002 (2)−0.003 (2)
C130.038 (2)0.047 (2)0.065 (3)0.0128 (17)−0.0054 (18)−0.011 (2)
C140.059 (2)0.071 (3)0.053 (3)0.034 (2)0.0219 (19)0.034 (2)
C150.068 (3)0.041 (2)0.055 (3)0.0165 (19)0.022 (2)0.0177 (19)
C160.070 (3)0.053 (3)0.041 (2)−0.003 (2)0.0019 (19)0.0058 (19)
C170.048 (2)0.062 (3)0.051 (3)0.0074 (19)0.0203 (18)0.021 (2)
C180.058 (2)0.062 (3)0.041 (2)−0.005 (2)0.0095 (18)0.015 (2)
C190.0274 (16)0.045 (2)0.0265 (18)−0.0012 (15)0.0061 (13)−0.0016 (16)
C200.0288 (19)0.063 (3)0.076 (3)0.0009 (17)0.0047 (18)−0.011 (2)

Geometric parameters (Å, °)

Cu—O11.908 (2)C9—C101.377 (5)
Cu—N11.968 (3)C9—H9A0.9300
Cu—O31.968 (2)C10—C111.368 (6)
Cu—N22.073 (3)C10—H10A0.9300
O1—C11.298 (3)C11—C121.359 (5)
O2—C31.366 (4)C11—H11A0.9300
O2—C181.437 (4)C12—C131.392 (5)
O3—C191.287 (4)C12—H12A0.9300
O4—C191.224 (4)C13—H13A0.9300
N1—C71.312 (4)C14—C151.529 (5)
N1—C141.481 (4)C14—H14A0.9700
N2—C151.463 (4)C14—H14B0.9700
N2—C171.475 (4)C15—H15A0.9700
N2—C161.493 (4)C15—H15B0.9700
C1—C21.412 (4)C16—H16A0.9600
C1—C61.436 (4)C16—H16B0.9600
C2—C31.374 (4)C16—H16C0.9600
C2—H2A0.9300C17—H17A0.9600
C3—C41.405 (5)C17—H17B0.9600
C4—C51.345 (5)C17—H17C0.9600
C4—H4A0.9300C18—H18A0.9600
C5—C61.421 (4)C18—H18B0.9600
C5—H5A0.9300C18—H18C0.9600
C6—C71.443 (4)C19—C201.510 (4)
C7—C81.505 (4)C20—H20A0.9600
C8—C131.378 (5)C20—H20B0.9600
C8—C91.378 (5)C20—H20C0.9600
O1—Cu—N190.82 (10)C10—C11—C12119.9 (3)
O1—Cu—O390.49 (8)C10—C11—H11A120.0
N1—Cu—O3175.05 (11)C12—C11—H11A120.0
O1—Cu—N2173.51 (10)C13—C12—C11120.4 (4)
N1—Cu—N283.74 (11)C13—C12—H12A119.8
O3—Cu—N294.64 (9)C11—C12—H12A119.8
C1—O1—Cu128.17 (19)C8—C13—C12120.1 (3)
C3—O2—C18117.2 (3)C8—C13—H13A119.9
C19—O3—Cu110.5 (2)C12—C13—H13A119.9
C7—N1—C14119.4 (3)N1—C14—C15107.7 (3)
C7—N1—Cu126.8 (2)N1—C14—H14A110.2
C14—N1—Cu113.3 (2)C15—C14—H14A110.2
C15—N2—C17109.6 (3)N1—C14—H14B110.2
C15—N2—C16111.0 (3)C15—C14—H14B110.2
C17—N2—C16105.9 (3)H14A—C14—H14B108.5
C15—N2—Cu102.5 (2)N2—C15—C14109.6 (3)
C17—N2—Cu117.1 (2)N2—C15—H15A109.8
C16—N2—Cu110.8 (2)C14—C15—H15A109.8
O1—C1—C2117.3 (3)N2—C15—H15B109.8
O1—C1—C6124.4 (3)C14—C15—H15B109.8
C2—C1—C6118.3 (3)H15A—C15—H15B108.2
C3—C2—C1122.2 (3)N2—C16—H16A109.5
C3—C2—H2A118.9N2—C16—H16B109.5
C1—C2—H2A118.9H16A—C16—H16B109.5
O2—C3—C2124.1 (3)N2—C16—H16C109.5
O2—C3—C4116.5 (3)H16A—C16—H16C109.5
C2—C3—C4119.4 (3)H16B—C16—H16C109.5
C5—C4—C3119.8 (3)N2—C17—H17A109.5
C5—C4—H4A120.1N2—C17—H17B109.5
C3—C4—H4A120.1H17A—C17—H17B109.5
C4—C5—C6123.4 (3)N2—C17—H17C109.5
C4—C5—H5A118.3H17A—C17—H17C109.5
C6—C5—H5A118.3H17B—C17—H17C109.5
C7—C6—C5120.2 (3)O2—C18—H18A109.5
C7—C6—C1122.8 (3)O2—C18—H18B109.5
C5—C6—C1116.9 (3)H18A—C18—H18B109.5
N1—C7—C6123.0 (3)O2—C18—H18C109.5
N1—C7—C8118.4 (3)H18A—C18—H18C109.5
C6—C7—C8118.6 (3)H18B—C18—H18C109.5
C13—C8—C9118.5 (3)O4—C19—O3123.3 (3)
C13—C8—C7122.3 (3)O4—C19—C20120.9 (3)
C9—C8—C7119.1 (3)O3—C19—C20115.8 (3)
C10—C9—C8121.0 (4)C19—C20—H20A109.5
C10—C9—H9A119.5C19—C20—H20B109.5
C8—C9—H9A119.5H20A—C20—H20B109.5
C11—C10—C9120.0 (4)C19—C20—H20C109.5
C11—C10—H10A120.0H20A—C20—H20C109.5
C9—C10—H10A120.0H20B—C20—H20C109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2108).

References

  • Bruker (1999). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, H.-Y., Tang, H.-Y. & Lin, C.-C. (2006). Macromolecules, 39, 3745–3752.
  • Coates, G. W. & Moore, D. R. (2004). Angew. Chem. Int. Ed.43, 6618–6639. [PubMed]
  • Darensbourg, D. J., Rainey, P. & Yarbrough, J. C. (2001). Inorg. Chem.40, 986–993.
  • Inoue, S., Koinuma, H. & Tsuruta, T. (1969). Makromol. Chem.130, 210–220.
  • Luo, H., Fanwick, P. E. & Green, M. A. (1998). Inorg. Chem.37, 1127–1130.
  • Luo, H., Lo, J.-M., Fanwick, P. E. J. G., Stowell, M. A. & Green, M. A. (1999). Inorg. Chem.38, 2071–2078. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shen, Y. M., Duan, W. L. & Shi, M. (2003). J. Org. Chem.68, 1559–1562. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography