PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): m1450.
Published online 2008 October 22. doi:  10.1107/S1600536808029462
PMCID: PMC2959765

Di-μ-acetato-κ3 O,O′:O3 O:O,O′-bis­[(acetato-κ2 O,O′)(1,10-phenan­throline-κ2 N,N′)cadmium(II)]

Abstract

The title compound, [Cd2(C2H3O2)4(C12H8N2)2], consists of dimeric units built up around a crystallographic symmetry centre. Each cadmium(II) unit is chelated by a 1,10-phenanthroline (phen) group and two acetate ligands, one of which also acts as a bridge, linking both seven-coordinated cadmium(II) centres. The crystal structure is governed by a single π–π inter­action between stacked phen groups [centroid–centroid distance 3.5209 (11) Å], leading to a planar structure parallel to (010).

Related literature

For related literature, see: Brown & Altermatt (1985 [triangle]); Janiak (2000 [triangle]); Harvey et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1450-scheme1.jpg

Experimental

Crystal data

  • [Cd2(C2H3O2)4(C12H8N2)2]
  • M r = 821.40
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1450-efi1.jpg
  • a = 8.4422 (7) Å
  • b = 15.6384 (13) Å
  • c = 22.2195 (18) Å
  • V = 2933.5 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.51 mm−1
  • T = 150 (2) K
  • 0.50 × 0.40 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.50, T max = 0.74
  • 22676 measured reflections
  • 3331 independent reflections
  • 3062 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.064
  • S = 1.06
  • 3331 reflections
  • 210 parameters
  • H-atom parameters constrained
  • Δρmax = 1.58 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808029462/kj2097sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029462/kj2097Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the CSD (Allen, 2002 [triangle]).

supplementary crystallographic information

Comment

The title compound consists of dimeric units located around a crystallographic symmetry centre (Fig. 1) and made up of two Cd cations, two 1,10-phenanthroline (phen) molecules and four acetate anions. Each cadmium(II) unit is chelated by a phen group (through both nitrogen atoms), and two acetates (through their carboxylato oxygens). A seventh coordination bond adds to these three chelating bites, by way of one of the latter oxygens which acts also as a bridge linking both cadmium(II) centres (Fig. 1). Table 1 presents the coordination distances achieved. The Cd-Cd distance (Cd1···Cd1i: 3.846 (1)Å, (i): 2-x, 1-y, 1-z) as well as the O-Cd-O angle (O14-Cd1-O14i: 72.37 (5) °) are unexceptional.

This coordination scheme of the bis(µ2-acetato)-bis(acetato)-bis(L) type (L: a chelating aromatic amine) leading to a dimeric unit is not common among transition metal cations and in fact this is the first case reported.

The description of coordination geometries when chelating ligands are involved usually poses intrinsic difficulties which can be elegantly surmounted through a vectorial description of the ligand geometry, as proposed by Harvey et al. (2006) based on the Bond Valence Theory (Brown and Altermatt, 1985). When applied to the present case, the geometrical outcome turns out to be a tetrahedron, with angles between ligand vectors spanning the range 91.3 (1)–124.6 (1)°. The fact that the two main values associated with the theory, i.e. the bond valence sum (2.01 valence units, (v.u).) and the modulus of the bond valence vector (0.06 v.u.), agree almost perfectly with expected values (2.00 v.u. and 0.00 v.u., respectively) suggests a significant stability of this coordination sphere.

Regarding non-covalent interactions, there are just a few and not too strong either. The only hydrogen bond present (Table 2) is a non conventional, intramolecular one linking one of the methyl hydrogens to a carboxylato oxygen (Fig. 1). In fact the packing is governed by a single π···π interaction (Table 3 and Fig. 2) between staked phen groups, which gives raise to weakly interacting planar structures paralell to (010).

Experimental

The title compound was obtained by direct mixing of two 0.15 M solutions of cadmium acetate dihydrate and 1,10-phenanthroline in dimethylformamide. Colorless needles began to develop at once, and after one day adequate crystals for X-ray diffraction could be extracted.

Refinement

The hydrogen atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms with C—H = 0.96–0.98Å and Uiso(H) = 1.2/1.5× Uequiv(C). Methyl groups were allowed to rotate around their 3-fold axis as well. A peak of ca. 1.5 eA-3 appears at 0.05 Å from Cd1. The next largest peak is less than 1.0 eA-3 in height.

Figures

Fig. 1.
The dimeric unit of the title compound: the symmetry-independent part shown in full thermal ellipsoids, drawn at the 40% level. The intradimeric H-bond is shown in dashed lines.
Fig. 2.
Packing view of the title compund down the [010] direction, showing the π···π bonded two-dimensional network.

Crystal data

[Cd2(C2H3O2)4(C12H8N2)2]F(000) = 1632
Mr = 821.40Dx = 1.860 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 11288 reflections
a = 8.4422 (7) Åθ = 2.7–27.8°
b = 15.6384 (13) ŵ = 1.51 mm1
c = 22.2195 (18) ÅT = 150 K
V = 2933.5 (4) Å3Block, colourless
Z = 40.50 × 0.40 × 0.20 mm

Data collection

Bruker SMART CCD area-detector diffractometer3331 independent reflections
Radiation source: fine-focus sealed tube3062 reflections with I > 2σ(I)
graphiteRint = 0.020
[var phi] and ω scansθmax = 27.9°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −10→11
Tmin = 0.50, Tmax = 0.74k = −19→20
22676 measured reflectionsl = −28→27

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0401P)2 + 1.4472P] where P = (Fo2 + 2Fc2)/3
3331 reflections(Δ/σ)max = 0.003
210 parametersΔρmax = 1.58 e Å3
0 restraintsΔρmin = −0.40 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd11.020491 (17)0.537614 (8)0.417981 (6)0.01764 (7)
N10.88137 (18)0.41531 (9)0.38716 (7)0.0202 (3)
N21.02282 (19)0.52821 (10)0.31067 (8)0.0216 (4)
C10.8037 (2)0.36453 (13)0.42461 (9)0.0235 (4)
H10.81290.37460.46660.028*
C20.7084 (2)0.29656 (12)0.40510 (9)0.0254 (4)
H20.65190.26260.43330.030*
C30.6983 (2)0.28003 (12)0.34466 (9)0.0262 (4)
H30.63640.23340.33050.031*
C40.7800 (2)0.33252 (12)0.30367 (9)0.0239 (4)
C50.7738 (2)0.32032 (14)0.23972 (9)0.0302 (4)
H50.71600.27340.22380.036*
C60.8487 (3)0.37424 (14)0.20153 (9)0.0312 (5)
H60.84410.36410.15940.037*
C70.9354 (2)0.44695 (13)0.22400 (9)0.0256 (4)
C81.0118 (2)0.50644 (16)0.18593 (10)0.0294 (5)
H81.00890.49930.14350.035*
C91.0896 (3)0.57412 (14)0.21075 (9)0.0308 (4)
H91.14160.61470.18580.037*
C101.0919 (2)0.58316 (13)0.27331 (9)0.0273 (4)
H101.14550.63100.29000.033*
C110.9455 (2)0.46042 (11)0.28630 (9)0.0209 (4)
C120.8686 (2)0.40117 (11)0.32713 (8)0.0199 (4)
C131.2479 (2)0.66285 (12)0.41072 (8)0.0207 (4)
C231.3877 (3)0.72303 (14)0.40927 (9)0.0286 (4)
H23A1.37590.76290.37550.043*
H23B1.48550.69010.40430.043*
H23C1.39230.75520.44710.043*
O131.27330 (18)0.58473 (9)0.42176 (6)0.0282 (3)
O231.11146 (17)0.69086 (10)0.40168 (8)0.0354 (3)
C140.7547 (2)0.58393 (11)0.48087 (8)0.0192 (3)
C240.6115 (2)0.59980 (13)0.51958 (9)0.0252 (4)
H24A0.61700.65760.53650.038*
H24B0.60880.55790.55230.038*
H24C0.51550.59430.49510.038*
O140.88527 (15)0.56447 (8)0.50710 (6)0.0229 (3)
O240.74741 (18)0.59082 (9)0.42510 (6)0.0247 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.01769 (10)0.01872 (10)0.01652 (10)−0.00151 (4)−0.00046 (4)−0.00019 (4)
N10.0207 (7)0.0190 (7)0.0210 (7)0.0005 (6)−0.0011 (6)−0.0009 (6)
N20.0212 (9)0.0241 (8)0.0196 (8)−0.0004 (6)0.0005 (6)−0.0009 (6)
C10.0231 (10)0.0235 (10)0.0238 (9)0.0010 (8)−0.0003 (7)0.0000 (7)
C20.0223 (9)0.0189 (9)0.0350 (10)−0.0002 (7)0.0037 (8)0.0016 (8)
C30.0209 (9)0.0206 (9)0.0372 (11)−0.0006 (7)−0.0017 (8)−0.0047 (8)
C40.0205 (9)0.0224 (9)0.0290 (10)0.0038 (7)−0.0037 (7)−0.0060 (7)
C50.0285 (10)0.0310 (11)0.0310 (10)−0.0005 (8)−0.0076 (8)−0.0124 (9)
C60.0326 (11)0.0398 (12)0.0213 (9)0.0053 (9)−0.0055 (8)−0.0101 (8)
C70.0231 (10)0.0318 (10)0.0220 (9)0.0070 (8)−0.0013 (8)−0.0021 (8)
C80.0299 (11)0.0401 (13)0.0180 (9)0.0071 (9)0.0009 (7)0.0013 (9)
C90.0321 (11)0.0364 (12)0.0240 (10)0.0012 (9)0.0056 (8)0.0074 (8)
C100.0273 (10)0.0292 (10)0.0255 (10)−0.0034 (8)0.0028 (8)0.0029 (8)
C110.0168 (9)0.0213 (9)0.0248 (10)0.0044 (7)−0.0034 (8)−0.0024 (7)
C120.0169 (8)0.0213 (9)0.0217 (9)0.0032 (7)−0.0018 (7)−0.0028 (7)
C130.0198 (9)0.0245 (10)0.0179 (8)−0.0030 (8)0.0003 (7)−0.0008 (7)
C230.0239 (10)0.0263 (10)0.0355 (11)−0.0050 (8)−0.0032 (8)0.0055 (8)
O130.0225 (7)0.0234 (7)0.0387 (8)−0.0037 (6)−0.0055 (6)0.0065 (6)
O230.0200 (7)0.0277 (8)0.0584 (10)0.0019 (6)−0.0047 (7)−0.0034 (7)
C140.0204 (8)0.0138 (8)0.0233 (9)−0.0002 (6)−0.0008 (7)0.0005 (7)
C240.0228 (9)0.0286 (10)0.0243 (9)0.0047 (8)0.0014 (7)0.0004 (8)
O140.0195 (6)0.0261 (7)0.0229 (6)0.0029 (5)−0.0011 (5)0.0022 (5)
O240.0248 (7)0.0291 (7)0.0201 (6)0.0023 (6)−0.0005 (5)0.0011 (5)

Geometric parameters (Å, °)

Cd1—O132.2594 (15)C6—H60.9500
Cd1—O142.3239 (13)C7—C111.403 (3)
Cd1—N12.3466 (15)C7—C81.413 (3)
Cd1—N22.3890 (18)C8—C91.362 (3)
Cd1—O14i2.4398 (13)C8—H80.9500
Cd1—O242.4561 (15)C9—C101.397 (3)
Cd1—O232.5425 (16)C9—H90.9500
N1—C11.324 (2)C10—H100.9500
N1—C121.356 (2)C11—C121.450 (3)
N2—C101.329 (3)C13—O231.248 (2)
N2—C111.358 (2)C13—O131.265 (2)
C1—C21.402 (3)C13—C231.510 (3)
C1—H10.9500C23—H23A0.9800
C2—C31.370 (3)C23—H23B0.9800
C2—H20.9500C23—H23C0.9800
C3—C41.407 (3)C14—O241.246 (2)
C3—H30.9500C14—O141.283 (2)
C4—C121.409 (3)C14—C241.504 (2)
C4—C51.435 (3)C24—H24A0.9800
C5—C61.353 (3)C24—H24B0.9800
C5—H50.9500C24—H24C0.9800
C6—C71.442 (3)O14—Cd1i2.4398 (13)
O13—Cd1—O14111.92 (5)C8—C7—C6122.93 (19)
O13—Cd1—N1138.54 (5)C9—C8—C7119.28 (19)
O14—Cd1—N198.64 (5)C9—C8—H8120.4
O13—Cd1—N292.83 (5)C7—C8—H8120.4
O14—Cd1—N2149.95 (5)C8—C9—C10119.21 (19)
N1—Cd1—N270.28 (5)C8—C9—H9120.4
O13—Cd1—O14i83.11 (5)C10—C9—H9120.4
O14—Cd1—O14i72.37 (5)N2—C10—C9123.3 (2)
N1—Cd1—O14i80.16 (5)N2—C10—H10118.3
N2—Cd1—O14i129.64 (5)C9—C10—H10118.3
O13—Cd1—O24140.70 (6)N2—C11—C7122.70 (19)
O14—Cd1—O2454.75 (4)N2—C11—C12117.68 (18)
N1—Cd1—O2479.93 (5)C7—C11—C12119.61 (17)
N2—Cd1—O2495.33 (5)N1—C12—C4122.03 (17)
O14i—Cd1—O24118.94 (4)N1—C12—C11118.39 (16)
O13—Cd1—O2354.03 (5)C4—C12—C11119.55 (17)
O14—Cd1—O2395.70 (5)O23—C13—O13121.80 (18)
N1—Cd1—O23151.38 (5)O23—C13—C23119.94 (18)
N2—Cd1—O2385.03 (6)O13—C13—C23118.26 (18)
O14i—Cd1—O23127.99 (5)O23—C13—Cd167.36 (11)
O24—Cd1—O2388.47 (5)O13—C13—Cd154.44 (10)
C1—N1—C12118.75 (16)C23—C13—Cd1172.67 (14)
C1—N1—Cd1123.59 (13)C13—C23—H23A109.5
C12—N1—Cd1117.36 (12)C13—C23—H23B109.5
C10—N2—C11117.80 (18)H23A—C23—H23B109.5
C10—N2—Cd1125.95 (13)C13—C23—H23C109.5
C11—N2—Cd1116.25 (13)H23A—C23—H23C109.5
N1—C1—C2123.00 (18)H23B—C23—H23C109.5
N1—C1—H1118.5C13—O13—Cd198.47 (12)
C2—C1—H1118.5C13—O23—Cd185.70 (12)
C3—C2—C1118.82 (18)O24—C14—O14120.99 (17)
C3—C2—H2120.6O24—C14—C24120.98 (17)
C1—C2—H2120.6O14—C14—C24118.02 (16)
C2—C3—C4119.59 (18)O24—C14—Cd163.65 (10)
C2—C3—H3120.2O14—C14—Cd157.71 (9)
C4—C3—H3120.2C24—C14—Cd1173.24 (13)
C3—C4—C12117.74 (17)C14—C24—H24A109.5
C3—C4—C5123.09 (18)C14—C24—H24B109.5
C12—C4—C5119.15 (18)H24A—C24—H24B109.5
C6—C5—C4121.43 (19)C14—C24—H24C109.5
C6—C5—H5119.3H24A—C24—H24C109.5
C4—C5—H5119.3H24B—C24—H24C109.5
C5—C6—C7120.77 (18)C14—O14—Cd194.46 (10)
C5—C6—H6119.6C14—O14—Cd1i138.16 (11)
C7—C6—H6119.6Cd1—O14—Cd1i107.63 (5)
C11—C7—C8117.7 (2)C14—O24—Cd189.32 (11)
C11—C7—C6119.41 (19)

Symmetry codes: (i) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C24—H24B···O13i0.982.513.313 (2)139

Symmetry codes: (i) −x+2, −y+1, −z+1.

Table 3 Table 3. π-π interactions (Å, °) for (I)

Group 1/Group 2ccdipdsa
Cg1/Cg2ii3.5209 (11)3.50 (1)4(2)

Symmetry code: (ii) 1/2+x,y,1/2-zCg1: N2,C10,C9,C8,C7,C11 Cg2: C4,C5,C6,C7,C11,C12ccd: center-to-center distance (distance between ring centroids); sa: mean slippage angle (angle subtended by the intercentroid vector to the plane normal); ipd: mean interplanar distance (distance from one plane to the neighbouring centroid). For details, see Janiak (2000).

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2097).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Harvey, M. A., Baggio, S. & Baggio, R. (2006). Acta Cryst. B62, 1038–1042. [PubMed]
  • Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3898.
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography