PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2168.
Published online 2008 October 22. doi:  10.1107/S1600536808033928
PMCID: PMC2959762

2-[(E)-4-Quinolylmethyl­ideneamino]­phenol

Abstract

In the title compound, C16H12N2O, the dihedral angle between the two aromatic ring systems is 68.54 (5)°. The mol­ecular packing is stabilized by intra- and inter­molecular O—H(...)N and intra­molecular C—H(...)N hydrogen-bond inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For general background, see: Gao et al. (2005 [triangle]); Hagen et al. (1983 [triangle]); Lozytska et al. (2004 [triangle]); Sessler et al. (2004 [triangle]); Kuz’min et al. (2000 [triangle]). For related structures, see: Räisänen, Elo et al. (2007 [triangle]); Räisänen Leskelä & Repo (2007 [triangle]). For experimental procedures, see: Gümüş (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2168-scheme1.jpg

Experimental

Crystal data

  • C16H12N2O
  • M r = 248.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2168-efi1.jpg
  • a = 6.7174 (6) Å
  • b = 23.931 (2) Å
  • c = 7.7495 (6) Å
  • β = 105.521 (1)°
  • V = 1200.33 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 150 (2) K
  • 0.25 × 0.20 × 0.10 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.978, T max = 0.991
  • 12294 measured reflections
  • 2991 independent reflections
  • 2338 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.105
  • S = 1.05
  • 2991 reflections
  • 220 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808033928/hb2807sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808033928/hb2807Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

2- and 4-(N-arylimino)quinolines have been investigated to their clinical efficacy for use as an analgetic drug (Hagen et al., 1983). A number of azomethines and their complexes possess high biological activity, including antineoplastic (Kuz'min et al., 2000; Gao et al., 2005) and antiviral (Lozytska et al., 2004). It has been recently shown that the macrocyclic Schiff bases can selectively bind different anions acting as artificial anionic receptors (Sessler et al., 2004).

In the title compound, (I), (Fig. 1), all bond lengths and angles are within normal ranges (Räisänen, Elo et al., 2007; Räisänen Leskelä, & Repo 2007; Allen et al., 1987). The molecule has a non-planar conformation. The dihedral angle between its two aromatic ring systems (C1–C6) and (N2/C8—C16) is 68.54 (5)°. The C6—N1—C7—C8 torsion angle is -179.98 (13)° and the N1—C6—C1—O1 angle deviates from zero only by -7.27 (18)°.

The molecular packing of the compound is stabilized by O—H···N and C—H···N hydrogen bonds (Table 1, Fig. 2).

Experimental

Quinoline-4-carboxaldehyde (1.0 mmol) was dissolved in hot absolute ethanol (5 ml) and an equimolar amount of 2-aminophenol dissolved in hot absolute ethanol (10 ml) was added. The mixture was refluxed at reaction temperature for 2 h. The progress of the reaction was monitored by TLC using n-hexane/ethylacetate (1:1 v/v) as eluent. Upon completion of the reaction, the crude product which precipitated on cooling was collected by filtration. Further purification was accomplished by recrystallization from ethanol to yield yellow blocks of (I). [yield 80%, m.p. 475–476 K]. UV (CHCl3): λmax248, 343, 377 nm. IR (KBr): 3029, 2851, 1625, 1574 and1472, 1293–1165, 830 and 757 cm-1. 1H NMR (CDCl3, 200 MHz): δ(p.p.m.) 6.95–9.08 (m, ArH and CH, 11H), 9.41(s, OH, 1H). MS: m/z 249 (M+1), 248 (M+), 247 (M-1), 128 (M-120), 120 (M-128). Analysis calculated for C16H12N2O: C 77.40, H 4.87, N 11.28%; found: C 77.62, H 4.96, N 11.12% (Gümüş, 2002).

Refinement

The H atoms were found from a difference map and refined freely.

Figures

Fig. 1.
View of (I): displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
Fig. 2.
The hydrogen bonding interactions of (I) viewed down the a axis. For clarity, H atoms not involved in hydrogen bonding have been omitted.

Crystal data

C16H12N2OF(000) = 520
Mr = 248.28Dx = 1.374 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2762 reflections
a = 6.7174 (6) Åθ = 2.9–26.4°
b = 23.931 (2) ŵ = 0.09 mm1
c = 7.7495 (6) ÅT = 150 K
β = 105.521 (1)°Block, yellow
V = 1200.33 (17) Å30.25 × 0.20 × 0.10 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer2991 independent reflections
Radiation source: sealed tube2338 reflections with I > 2σ(I)
graphiteRint = 0.037
[var phi] and ω scansθmax = 28.4°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −8→8
Tmin = 0.978, Tmax = 0.991k = −31→31
12294 measured reflectionsl = −10→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: difmap and geom
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0424P)2 + 0.3303P] where P = (Fo2 + 2Fc2)/3
2991 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.06305 (16)0.13183 (4)0.54890 (14)0.0340 (3)
N10.76446 (16)0.10349 (4)0.72156 (14)0.0243 (3)
N20.80975 (16)−0.03956 (5)1.22446 (15)0.0258 (3)
C10.8930 (2)0.16414 (5)0.52971 (17)0.0264 (4)
C20.8697 (3)0.20982 (6)0.41486 (19)0.0340 (4)
C30.6997 (3)0.24448 (6)0.3910 (2)0.0372 (5)
C40.5529 (3)0.23493 (6)0.4839 (2)0.0370 (5)
C50.5745 (2)0.18955 (6)0.59862 (19)0.0313 (4)
C60.7433 (2)0.15362 (5)0.62205 (17)0.0242 (4)
C70.72483 (19)0.10243 (5)0.87303 (17)0.0235 (3)
C80.74355 (18)0.05168 (5)0.98390 (16)0.0215 (3)
C90.78135 (19)0.05904 (6)1.16557 (17)0.0236 (3)
C100.81518 (19)0.01260 (6)1.28017 (17)0.0260 (4)
C110.76319 (18)−0.04841 (5)1.04285 (17)0.0233 (3)
C120.72937 (18)−0.00427 (5)0.91566 (16)0.0212 (3)
C130.67854 (19)−0.01837 (6)0.73121 (17)0.0240 (4)
C140.6654 (2)−0.07303 (6)0.67751 (18)0.0278 (4)
C150.7014 (2)−0.11657 (6)0.8042 (2)0.0308 (4)
C160.7487 (2)−0.10454 (5)0.98290 (19)0.0282 (4)
H11.068 (3)0.1013 (9)0.628 (3)0.072 (6)*
H20.976 (3)0.2161 (7)0.350 (2)0.044 (5)*
H30.686 (3)0.2753 (7)0.307 (2)0.046 (5)*
H40.433 (3)0.2587 (7)0.469 (2)0.042 (5)*
H50.468 (2)0.1808 (6)0.657 (2)0.033 (4)*
H70.689 (2)0.1376 (6)0.929 (2)0.031 (4)*
H90.788 (2)0.0966 (6)1.214 (2)0.031 (4)*
H100.844 (2)0.0186 (6)1.409 (2)0.024 (4)*
H130.653 (2)0.0114 (6)0.642 (2)0.025 (4)*
H140.632 (2)−0.0822 (6)0.550 (2)0.032 (4)*
H150.693 (2)−0.1566 (7)0.765 (2)0.035 (4)*
H160.772 (2)−0.1340 (7)1.074 (2)0.033 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0385 (6)0.0322 (5)0.0359 (6)0.0058 (4)0.0181 (4)0.0097 (4)
N10.0246 (5)0.0223 (5)0.0254 (6)0.0006 (4)0.0055 (4)0.0023 (4)
N20.0220 (5)0.0295 (6)0.0259 (6)0.0025 (4)0.0062 (4)0.0040 (5)
C10.0343 (7)0.0221 (6)0.0214 (6)−0.0012 (5)0.0049 (5)−0.0020 (5)
C20.0475 (9)0.0274 (7)0.0272 (7)−0.0040 (6)0.0100 (6)0.0022 (6)
C30.0549 (10)0.0214 (7)0.0308 (8)−0.0020 (6)0.0037 (7)0.0037 (6)
C40.0436 (9)0.0238 (7)0.0383 (8)0.0074 (6)0.0018 (7)0.0010 (6)
C50.0335 (7)0.0257 (7)0.0328 (7)0.0021 (6)0.0057 (6)0.0002 (6)
C60.0303 (7)0.0185 (6)0.0217 (6)−0.0016 (5)0.0036 (5)−0.0009 (5)
C70.0226 (6)0.0221 (6)0.0249 (6)0.0003 (5)0.0050 (5)−0.0017 (5)
C80.0168 (6)0.0238 (6)0.0238 (6)−0.0003 (5)0.0052 (4)0.0004 (5)
C90.0211 (6)0.0251 (6)0.0248 (6)−0.0007 (5)0.0064 (5)−0.0023 (5)
C100.0227 (6)0.0345 (7)0.0210 (6)0.0009 (5)0.0060 (5)0.0005 (5)
C110.0173 (6)0.0259 (6)0.0269 (6)0.0004 (5)0.0062 (5)0.0017 (5)
C120.0166 (6)0.0234 (6)0.0241 (6)0.0000 (4)0.0064 (4)−0.0004 (5)
C130.0212 (6)0.0266 (7)0.0247 (6)0.0006 (5)0.0070 (5)0.0001 (5)
C140.0249 (6)0.0297 (7)0.0285 (7)−0.0002 (5)0.0068 (5)−0.0056 (5)
C150.0282 (7)0.0240 (7)0.0388 (8)0.0006 (5)0.0064 (6)−0.0036 (6)
C160.0257 (7)0.0224 (6)0.0358 (7)0.0012 (5)0.0071 (5)0.0036 (6)

Geometric parameters (Å, °)

O1—C11.3542 (17)C11—C121.4210 (17)
O1—H10.95 (2)C12—C131.4186 (18)
N1—C61.4126 (16)C13—C141.368 (2)
N1—C71.2715 (17)C14—C151.408 (2)
N2—C111.3740 (17)C15—C161.366 (2)
N2—C101.3181 (19)C2—H20.989 (19)
C1—C21.3918 (19)C3—H30.972 (16)
C1—C61.4042 (19)C4—H40.967 (19)
C2—C31.383 (3)C5—H50.966 (14)
C3—C41.387 (3)C7—H71.005 (15)
C4—C51.386 (2)C9—H90.971 (15)
C5—C61.3957 (19)C10—H100.975 (15)
C7—C81.4735 (17)C13—H130.975 (15)
C8—C91.3734 (18)C14—H140.978 (15)
C8—C121.4334 (17)C15—H151.002 (17)
C9—C101.403 (2)C16—H160.980 (16)
C11—C161.4161 (17)
C1—O1—H1113.2 (13)C13—C14—C15120.70 (13)
C6—N1—C7120.37 (11)C14—C15—C16120.07 (13)
C10—N2—C11117.40 (11)C11—C16—C15120.62 (12)
O1—C1—C2117.77 (13)C1—C2—H2118.1 (10)
C2—C1—C6119.56 (13)C3—C2—H2121.6 (10)
O1—C1—C6122.67 (11)C2—C3—H3118.1 (12)
C1—C2—C3120.27 (16)C4—C3—H3121.3 (12)
C2—C3—C4120.54 (14)C3—C4—H4121.7 (10)
C3—C4—C5119.68 (16)C5—C4—H4118.6 (10)
C4—C5—C6120.53 (14)C4—C5—H5120.4 (9)
N1—C6—C1116.70 (11)C6—C5—H5118.9 (9)
C1—C6—C5119.40 (12)N1—C7—H7121.0 (8)
N1—C6—C5123.63 (12)C8—C7—H7115.6 (8)
N1—C7—C8123.26 (11)C8—C9—H9119.5 (9)
C7—C8—C12124.61 (11)C10—C9—H9120.4 (9)
C9—C8—C12118.28 (11)N2—C10—H10117.1 (9)
C7—C8—C9117.10 (11)C9—C10—H10119.1 (9)
C8—C9—C10120.11 (13)C12—C13—H13119.3 (9)
N2—C10—C9123.87 (12)C14—C13—H13119.9 (9)
N2—C11—C16117.33 (11)C13—C14—H14120.0 (9)
C12—C11—C16119.56 (12)C15—C14—H14119.3 (9)
N2—C11—C12123.11 (11)C14—C15—H15120.7 (9)
C8—C12—C13124.63 (11)C16—C15—H15119.2 (9)
C11—C12—C13118.22 (11)C11—C16—H16117.5 (9)
C8—C12—C11117.13 (11)C15—C16—H16121.8 (9)
C12—C13—C14120.82 (12)
C7—N1—C6—C1141.39 (13)C7—C8—C9—C10−175.57 (12)
C7—N1—C6—C5−44.64 (19)C12—C8—C9—C103.15 (19)
C6—N1—C7—C8−179.98 (13)C7—C8—C12—C11176.39 (12)
C11—N2—C10—C9−1.61 (19)C7—C8—C12—C13−5.5 (2)
C10—N2—C11—C122.52 (19)C9—C8—C12—C11−2.23 (18)
C10—N2—C11—C16−177.36 (12)C9—C8—C12—C13175.91 (13)
O1—C1—C2—C3−179.58 (13)C8—C9—C10—N2−1.3 (2)
C6—C1—C2—C3−0.4 (2)N2—C11—C12—C8−0.62 (19)
O1—C1—C6—N1−7.27 (18)N2—C11—C12—C13−178.87 (12)
O1—C1—C6—C5178.49 (12)C16—C11—C12—C8179.26 (12)
C2—C1—C6—N1173.54 (12)C16—C11—C12—C131.00 (18)
C2—C1—C6—C5−0.70 (19)N2—C11—C16—C15179.50 (13)
C1—C2—C3—C41.4 (2)C12—C11—C16—C15−0.4 (2)
C2—C3—C4—C5−1.4 (2)C8—C12—C13—C14−179.03 (13)
C3—C4—C5—C60.4 (2)C11—C12—C13—C14−0.92 (19)
C4—C5—C6—N1−173.12 (13)C12—C13—C14—C150.2 (2)
C4—C5—C6—C10.7 (2)C13—C14—C15—C160.4 (2)
N1—C7—C8—C9153.65 (13)C14—C15—C16—C11−0.3 (2)
N1—C7—C8—C12−25.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.95 (2)2.34 (2)2.7766 (16)107.5 (15)
O1—H1···N2i0.95 (2)1.91 (2)2.8085 (16)156.4 (19)
C13—H13···N10.975 (15)2.356 (14)2.9776 (17)121.0 (11)

Symmetry codes: (i) −x+2, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2807).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gao, J., Ross Woolley, F. & Zingaro, R. A. (2005). J. Med. Chem.48, 7192–7197. [PubMed]
  • Gümüş, M. K. (2002). MSc thesis, Yıldız Technical University, Istanbul, Turkey.
  • Hagen, V., Dove, B., Morgenstern, E., Labes, D., Göres, E., Tomaschewski, G., Geisler, G. & Franke, C. (1983). Pharmazie, 38, 437–439. [PubMed]
  • Kuz’min, V. E., Lozitsky, V. P., Kamalov, G. L., Lozitskaya, R. N., Zheltvay, A. I., Fedtchouk, A. S. & Kryzhanovsky, D. N. (2000). Acta Biochim. Pol.47, 867–875. [PubMed]
  • Lozytska, R., Kryzhanovsky, D., Mazepa, A., Gorodniuk, V., Kuz’min, V., Lozitsky, V., Fedchuck, A., Rybalko, S., Diadium, S. & Vanden Eynde, J. J. (2004). Arkivoc, xix, 118R.
  • Räisänen, M. T., Elo, P., Kettunen, M., Klinga, M., Leskelä, M. & Repo, T. (2007). Synth. Commun.37, 1765–1777.
  • Räisänen, M. T., Leskelä, M. & Repo, T. (2007). Acta Cryst. E63, o1816–o1817.
  • Sessler, J. L., Katayev, E., Pantos, G. D. & Ustynyuk, Yu. A. (2004). J. Chem. Soc. Chem. Commun. pp. 1276–1277. [PubMed]
  • Sheldrick, G. M. (2003). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography