PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2115–o2116.
Published online 2008 October 15. doi:  10.1107/S1600536808032546
PMCID: PMC2959760

Ethyl 4-(2-chloro­quinolin-3-yl)-1-phenyl-1H-pyrrole-3-carboxyl­ate

Abstract

In the mol­ecule of the title compound, C22H17ClN2O2, the dihedral angles formed by the pyrrole ring with the quinoline and phenyl rings are 67.93 (8) and 28.40 (11)°, respectively. In the crystal structure, mol­ecules are linked into dimers by inter­molecular C—H(...)O hydrogen bonds.

Related literature

For general background, see: Corvo & Pereira (2002 [triangle]); Harrison et al. (2006 [triangle]); Wright et al. (2001 [triangle]); Sahu et al. (2002 [triangle]); Michael (1997 [triangle]); Rezig et al. (2000 [triangle]); Raj Amal et al. (2003 [triangle]); Witherup et al. (1995 [triangle]); Moussaoui et al. (2002 [triangle]). For related structures, see: Belfaitah et al. (2006 [triangle]); Bouraiou et al. (2008 [triangle]);. For details of the synthesis, see: Menasra et al. (2005 [triangle]); Benzerka et al. (2008 [triangle]). For pyrroles as building blocks in naturally occurring and biologically active compounds such as heme, chloro­phyll and vitamin B12, see: Bigg & Bonnaud (1994 [triangle]); Demir et al. (2005 [triangle]); Tsukamoto et al. (2001 [triangle]);

An external file that holds a picture, illustration, etc.
Object name is e-64-o2115-scheme1.jpg

Experimental

Crystal data

  • C22H17ClN2O2
  • M r = 376.83
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2115-efi1.jpg
  • a = 20.2021 (6) Å
  • b = 8.0500 (1) Å
  • c = 24.0238 (7) Å
  • β = 105.29 (2)°
  • V = 3768.6 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.22 mm−1
  • T = 296 (2) K
  • 0.15 × 0.06 × 0.05 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 9812 measured reflections
  • 3315 independent reflections
  • 2343 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.142
  • S = 1.02
  • 3315 reflections
  • 244 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg & Berndt, 2001 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808032546/rz2251sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808032546/rz2251Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to Professor Lahcéne Ouahab (Organométalliques et materiaux moléculaire, Université de Rennes I, France) for data-collection facilities and to Professor Salah Rhouati (PHYSYNOR, Université Mentouri Constantine, Algérie) for his assistance. Thanks are due to MESRS (Ministére de l’enseignement supérieur et de la recherche scientifique) for financial support.

supplementary crystallographic information

Comment

Heterocyclic compounds and particularly five and six membered ring compounds occupy a prominent place among various classes of organic compounds for their diverse biological activities. Among a wide variety of heterocycles that have been explored for developing pharmaceutically important molecules (Raj Amal et al., 2003), quinolines have played an important role in medicine chemistry (Wright et al., 2001; Sahu et al., 2002). Some of them have received considerable attention due to their presence in numerous natural products along with their wide ranging application as drugs, pharmaceutical and agrochemicals (Michael, 1997). Pyrroles are an important class of heterocyclic compounds and are widely used in synthetic organic chemistry and material science (Corvo & Pereira, 2002; Harrison et al., 2006). Pyrroles are often seen as building blocks in naturally occurring and biologically active compounds such as heme, chlorophyll and vitamin B12 (Demir et al., 2005; Bigg & Bonnaud, 1994; Tsukamoto et al., 2001). Syntheses of pyrroloquinolines derivatives were not particularly numerous in the literature before the initial report of the unique alkaloids (Witherup et al., 1995). In a continuation of our program on the synthesis and biological evaluation of quinolines derivatives (Belfaitah et al., 2006; Bouraiou et al., 2008; Rezig et al., 2000; Moussaoui et al., 2002), we have elaborated an efficient route for the synthesis of 3-pyrrolylquinolines by dehydrogenation of 3-pyrrolidinyl quinolines using activated manganese dioxide in refluxing THF during 5 h (Menasra et al., 2005; Benzerka et al. 2008). We report here the crystal structure of a new N-phenylpyrrole derivative bearing a quinoline ring at C-3 and an ester group at C-4.

The molecular structure and the atom-numbering scheme of the title compound are shown in Fig. 1. The quinoline ring system is essentially planar, the dihedral angle formed by the six-membered rings being only 0.64 (8)°. The dihedral angles between the pyrrole ring and the quinoline and phenyl rings are 67.93 (8) and 28.40 (11)°, respectively. The geometric parameters are in agreement with those of other structures possessing a quinolyl substituent previously reported in the literature (Belfaitah et al., 2006; Bouraiou et al., 2008). In the crystal structure (Fig. 2), molecules are linked into dimers by intermolecular C—H···O hydrogen bonds (Table 1).

Experimental

To a 0.1 M solution of ethyl 4-(2-chloroquinolin-3-yl)-1-phenylpyrrole -3-carboxylate (1.5 mmol) in dry THF (15 ml) 2.5 equivalents of activated MnO2 were added. The mixture was refluxed for 2.5 h. The same amount of activated MnO2 was then added, and the reflux was continued for an additional 2.5 h. After cooling, the mixture was diluted with THF, filtered through Celite and washed with THF (5x5 ml). The filtrate was concentrated under reduced pressure, diluted with CH2Cl2 and washed with water (2x5 ml). The organic layers were separated and dried over anhydrous MgSO4. The filtrate was concentrated and the residue was purified by flash chromatography on silica gel using AcOEt/pentane (2:1 v/v) as eluent to afford the corresponding pure pyrrole derivative. Crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent.

Refinement

All H atoms were introduced in calculated positions and treated as riding, with C—H = 0.93-0.97 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl hydrogen atoms.

Figures

Fig. 1.
The molecular structure of the title compound with the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Packing diagram of the title compound viewed along the b axis.

Crystal data

C22H17ClN2O2F(000) = 1568
Mr = 376.83Dx = 1.328 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2yaCell parameters from 9812 reflections
a = 20.2021 (6) Åθ = 5.1–25.1°
b = 8.0500 (1) ŵ = 0.22 mm1
c = 24.0238 (7) ÅT = 296 K
β = 105.29 (2)°Needle, white
V = 3768.6 (4) Å30.15 × 0.06 × 0.05 mm
Z = 8

Data collection

Nonius KappaCCD diffractometer2343 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
graphiteθmax = 25.1°, θmin = 5.1°
[var phi] scans, and ω scans with κ offsetsh = −23→24
9812 measured reflectionsk = −9→9
3315 independent reflectionsl = −28→28

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.103P)2 + 0.3358P] where P = (Fo2 + 2Fc2)/3
3315 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.12476 (3)0.20796 (10)0.35827 (3)0.0669 (3)
O10.19940 (10)−0.3023 (3)0.31308 (8)0.0722 (6)
C130.12321 (12)−0.1022 (3)0.25970 (10)0.0454 (6)
N20.10945 (10)0.0124 (3)0.17336 (8)0.0480 (5)
N10.00661 (12)0.1516 (3)0.37746 (9)0.0607 (6)
C3−0.04742 (13)−0.0147 (3)0.27328 (11)0.0515 (6)
H3−0.0658−0.06710.23810.062*
O20.11506 (10)−0.2065 (3)0.34790 (8)0.0696 (6)
C200.15071 (12)−0.2127 (3)0.30819 (10)0.0489 (6)
C120.14907 (12)−0.0931 (3)0.21243 (10)0.0483 (6)
H120.1874−0.14980.20790.058*
C10.04143 (13)0.1247 (3)0.34028 (10)0.0509 (6)
C140.12066 (13)0.0599 (3)0.11921 (10)0.0507 (6)
C100.06434 (12)0.0057 (3)0.24895 (10)0.0445 (5)
C110.05718 (12)0.0714 (3)0.19565 (10)0.0490 (6)
H110.02270.14440.17700.059*
C20.01905 (12)0.0392 (3)0.28691 (10)0.0455 (6)
C4−0.08852 (13)0.0083 (3)0.31192 (12)0.0555 (7)
C9−0.05921 (14)0.0900 (4)0.36430 (12)0.0601 (7)
C5−0.15703 (14)−0.0503 (4)0.30059 (15)0.0705 (8)
H5−0.1772−0.10420.26600.085*
C160.19620 (18)0.1089 (5)0.05969 (13)0.0772 (9)
H160.24020.10750.05460.093*
C150.18577 (15)0.0595 (4)0.11161 (12)0.0635 (7)
H150.22280.02580.14150.076*
C7−0.1635 (2)0.0529 (5)0.39232 (18)0.0898 (11)
H7−0.18890.06750.41900.108*
C6−0.19327 (17)−0.0274 (4)0.34045 (18)0.0827 (10)
H6−0.2382−0.06580.33300.099*
C8−0.09838 (17)0.1100 (5)0.40466 (15)0.0802 (10)
H8−0.07930.16260.43970.096*
C190.06632 (17)0.1077 (5)0.07449 (12)0.0823 (10)
H190.02190.10530.07880.099*
C170.14196 (19)0.1601 (5)0.01550 (13)0.0817 (10)
H170.14920.1950−0.01930.098*
C210.1396 (2)−0.3041 (5)0.39981 (13)0.0838 (10)
H21A0.1874−0.33360.40460.101*
H21B0.1132−0.40570.39700.101*
C180.07782 (19)0.1593 (6)0.02294 (13)0.0936 (12)
H180.04100.1940−0.00700.112*
C220.1328 (3)−0.2075 (6)0.44902 (17)0.141 (2)
H22A0.1489−0.27190.48360.211*
H22B0.0855−0.17910.44410.211*
H22C0.1596−0.10780.45190.211*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0655 (4)0.0788 (5)0.0550 (4)−0.0096 (4)0.0136 (3)−0.0156 (3)
O10.0693 (12)0.0869 (15)0.0660 (12)0.0322 (12)0.0276 (10)0.0229 (11)
C130.0496 (12)0.0459 (14)0.0408 (12)0.0020 (11)0.0120 (10)−0.0005 (10)
N20.0535 (11)0.0519 (12)0.0399 (10)0.0034 (10)0.0144 (9)0.0006 (9)
N10.0674 (14)0.0676 (15)0.0516 (12)0.0092 (12)0.0239 (11)−0.0019 (11)
C30.0547 (14)0.0473 (15)0.0517 (14)0.0051 (11)0.0127 (11)0.0025 (11)
O20.0821 (13)0.0810 (14)0.0542 (11)0.0318 (11)0.0330 (10)0.0230 (10)
C200.0540 (14)0.0486 (14)0.0461 (13)0.0043 (12)0.0170 (11)0.0016 (11)
C120.0521 (13)0.0487 (15)0.0456 (13)0.0050 (11)0.0154 (11)0.0002 (11)
C10.0578 (14)0.0514 (15)0.0443 (13)0.0036 (12)0.0153 (11)−0.0017 (11)
C140.0635 (15)0.0514 (15)0.0379 (12)0.0035 (12)0.0143 (11)0.0013 (11)
C100.0483 (12)0.0434 (13)0.0413 (12)0.0015 (11)0.0112 (10)−0.0039 (10)
C110.0502 (13)0.0497 (14)0.0466 (13)0.0060 (11)0.0116 (10)−0.0004 (11)
C20.0512 (13)0.0424 (14)0.0428 (13)0.0056 (10)0.0124 (10)0.0010 (10)
C40.0578 (15)0.0498 (15)0.0622 (16)0.0104 (12)0.0219 (12)0.0127 (13)
C90.0659 (16)0.0611 (18)0.0589 (16)0.0149 (14)0.0262 (13)0.0082 (13)
C50.0592 (16)0.0652 (19)0.091 (2)0.0067 (14)0.0263 (16)0.0113 (16)
C160.088 (2)0.093 (2)0.0613 (18)0.0162 (19)0.0381 (16)0.0154 (17)
C150.0694 (17)0.0738 (19)0.0515 (15)0.0134 (15)0.0235 (13)0.0112 (14)
C70.089 (2)0.103 (3)0.095 (3)0.020 (2)0.054 (2)0.016 (2)
C60.0617 (17)0.078 (2)0.117 (3)0.0093 (17)0.0390 (19)0.025 (2)
C80.083 (2)0.094 (3)0.078 (2)0.0131 (19)0.0467 (18)0.0042 (18)
C190.0695 (18)0.125 (3)0.0500 (16)0.014 (2)0.0121 (14)0.0124 (18)
C170.110 (3)0.094 (3)0.0478 (16)0.016 (2)0.0330 (17)0.0147 (16)
C210.113 (3)0.089 (2)0.0569 (18)0.034 (2)0.0361 (17)0.0305 (17)
C180.092 (2)0.138 (4)0.0473 (17)0.025 (2)0.0121 (16)0.0218 (19)
C220.245 (6)0.113 (4)0.061 (2)0.023 (4)0.035 (3)0.017 (2)

Geometric parameters (Å, °)

Cl1—C11.757 (3)C9—C81.413 (4)
O1—C201.200 (3)C5—C61.362 (4)
C13—C121.371 (3)C5—H50.9300
C13—C101.440 (3)C16—C171.373 (5)
C13—C201.454 (3)C16—C151.377 (4)
N2—C121.359 (3)C16—H160.9300
N2—C111.388 (3)C15—H150.9300
N2—C141.430 (3)C7—C81.350 (5)
N1—C11.293 (3)C7—C61.392 (5)
N1—C91.376 (4)C7—H70.9300
C3—C21.366 (3)C6—H60.9300
C3—C41.411 (3)C8—H80.9300
C3—H30.9300C19—C181.383 (4)
O2—C201.339 (3)C19—H190.9300
O2—C211.446 (3)C17—C181.354 (5)
C12—H120.9300C17—H170.9300
C1—C21.420 (3)C21—C221.451 (5)
C14—C191.373 (4)C21—H21A0.9700
C14—C151.375 (4)C21—H21B0.9700
C10—C111.357 (3)C18—H180.9300
C10—C21.477 (3)C22—H22A0.9600
C11—H110.9300C22—H22B0.9600
C4—C91.405 (4)C22—H22C0.9600
C4—C51.419 (4)
C12—C13—C10107.2 (2)C6—C5—H5120.1
C12—C13—C20123.2 (2)C4—C5—H5120.1
C10—C13—C20129.5 (2)C17—C16—C15120.4 (3)
C12—N2—C11108.49 (19)C17—C16—H16119.8
C12—N2—C14126.1 (2)C15—C16—H16119.8
C11—N2—C14125.3 (2)C14—C15—C16120.0 (3)
C1—N1—C9116.8 (2)C14—C15—H15120.0
C2—C3—C4120.8 (2)C16—C15—H15120.0
C2—C3—H3119.6C8—C7—C6121.4 (3)
C4—C3—H3119.6C8—C7—H7119.3
C20—O2—C21117.9 (2)C6—C7—H7119.3
O1—C20—O2122.2 (2)C5—C6—C7120.4 (3)
O1—C20—C13125.2 (2)C5—C6—H6119.8
O2—C20—C13112.6 (2)C7—C6—H6119.8
N2—C12—C13108.8 (2)C7—C8—C9120.0 (4)
N2—C12—H12125.6C7—C8—H8120.0
C13—C12—H12125.6C9—C8—H8120.0
N1—C1—C2127.1 (2)C14—C19—C18119.8 (3)
N1—C1—Cl1115.3 (2)C14—C19—H19120.1
C2—C1—Cl1117.60 (18)C18—C19—H19120.1
C19—C14—C15119.5 (2)C18—C17—C16119.5 (3)
C19—C14—N2120.1 (2)C18—C17—H17120.2
C15—C14—N2120.4 (2)C16—C17—H17120.2
C11—C10—C13106.4 (2)O2—C21—C22109.1 (3)
C11—C10—C2125.6 (2)O2—C21—H21A109.9
C13—C10—C2128.0 (2)C22—C21—H21A109.9
C10—C11—N2109.1 (2)O2—C21—H21B109.9
C10—C11—H11125.4C22—C21—H21B109.9
N2—C11—H11125.4H21A—C21—H21B108.3
C3—C2—C1115.4 (2)C17—C18—C19120.8 (3)
C3—C2—C10121.6 (2)C17—C18—H18119.6
C1—C2—C10123.0 (2)C19—C18—H18119.6
C9—C4—C3117.9 (2)C21—C22—H22A109.5
C9—C4—C5119.1 (3)C21—C22—H22B109.5
C3—C4—C5122.9 (3)H22A—C22—H22B109.5
N1—C9—C4121.9 (2)C21—C22—H22C109.5
N1—C9—C8118.9 (3)H22A—C22—H22C109.5
C4—C9—C8119.2 (3)H22B—C22—H22C109.5
C6—C5—C4119.9 (3)
C21—O2—C20—O14.1 (4)Cl1—C1—C2—C105.3 (3)
C21—O2—C20—C13−176.6 (3)C11—C10—C2—C367.9 (4)
C12—C13—C20—O12.5 (4)C13—C10—C2—C3−111.1 (3)
C10—C13—C20—O1178.0 (3)C11—C10—C2—C1−113.8 (3)
C12—C13—C20—O2−176.7 (2)C13—C10—C2—C167.2 (4)
C10—C13—C20—O2−1.3 (4)C2—C3—C4—C90.8 (4)
C11—N2—C12—C13−0.3 (3)C2—C3—C4—C5−177.9 (3)
C14—N2—C12—C13177.7 (2)C1—N1—C9—C4−2.8 (4)
C10—C13—C12—N2−0.5 (3)C1—N1—C9—C8177.4 (3)
C20—C13—C12—N2175.8 (2)C3—C4—C9—N12.2 (4)
C9—N1—C1—C20.4 (4)C5—C4—C9—N1−179.1 (3)
C9—N1—C1—Cl1179.1 (2)C3—C4—C9—C8−178.0 (3)
C12—N2—C14—C19153.2 (3)C5—C4—C9—C80.7 (4)
C11—N2—C14—C19−29.2 (4)C9—C4—C5—C6−0.3 (4)
C12—N2—C14—C15−27.3 (4)C3—C4—C5—C6178.4 (3)
C11—N2—C14—C15150.3 (3)C19—C14—C15—C160.9 (5)
C12—C13—C10—C111.1 (3)N2—C14—C15—C16−178.6 (3)
C20—C13—C10—C11−174.9 (2)C17—C16—C15—C140.5 (5)
C12—C13—C10—C2−179.8 (2)C4—C5—C6—C7−0.1 (5)
C20—C13—C10—C24.2 (4)C8—C7—C6—C50.0 (6)
C13—C10—C11—N2−1.2 (3)C6—C7—C8—C90.5 (6)
C2—C10—C11—N2179.6 (2)N1—C9—C8—C7179.0 (3)
C12—N2—C11—C101.0 (3)C4—C9—C8—C7−0.9 (5)
C14—N2—C11—C10−177.0 (2)C15—C14—C19—C18−1.9 (5)
C4—C3—C2—C1−2.9 (4)N2—C14—C19—C18177.6 (3)
C4—C3—C2—C10175.5 (2)C15—C16—C17—C18−1.0 (6)
N1—C1—C2—C32.4 (4)C20—O2—C21—C22139.1 (4)
Cl1—C1—C2—C3−176.30 (19)C16—C17—C18—C190.0 (6)
N1—C1—C2—C10−176.0 (3)C14—C19—C18—C171.5 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.932.503.383 (3)159
C15—H15···O1i0.932.453.275 (4)148

Symmetry codes: (i) −x+1/2, −y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2251).

References

  • Belfaitah, A., Ladraa, S., Bouraiou, A., Benali-Cherif, N., Debache, A. & Rhouati, S. (2006). Acta Cryst. E62, o1355–o1357.
  • Benzerka, S., Bouraiou, A., Debache, A., Rhouati, S. & Belfaitah, A. (2008). J. Soc. Alger. Chim.18, 71–90.
  • Bigg, C. H. & Bonnaud, B. (1994). Synthesis, pp. 465–467.
  • Bouraiou, A., Debache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2008). J. Heterocycl. Chem.45, 329–333.
  • Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact, Bonn, Germany.
  • Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst.36, 1103.
  • Corvo, M. C. & Pereira, M. A. (2002). Tetrahedron Lett.43, 455–458.
  • Demir, S., Cigdem Igdir, A. & Batuhan Gunay, N. (2005). Tetrahedron Asymmetry, 16, 3170–3175.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Harrison, T. J., Koak, I. A., Corbella-Pane, M. & Dake, G. R. (2006). J. Org. Chem.71, 4525–4529. [PubMed]
  • Menasra, H., Kedjadja, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2005). Synth. Commun.35, 2779–2788.
  • Michael, J. P. (1997). Nat. Prod. Rep.14, 605–618.
  • Moussaoui, F., Belfaitah, A., Debache, A. & Rhouati, S. (2002). J. Soc. Alger. Chim.12, 71–78.
  • Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Raj Amal, A., Raghunathan, R., Sridevikumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem.11, 407–419. [PubMed]
  • Rezig, R., Chebah, M., Rhouati, S., Ducki, S. & Lawrence, N. (2000). J. Soc. Alger. Chim.10, 111–120.
  • Sahu, N. S., Pal, C., Mandal, N. B., Banerjee, S., Raha, M., Kundu, A. P., Basu, A., Ghosh, M., Roy, K. & Bandyopadhyay, S. (2002). Bioorg. Med. Chem.10, 1687–1693. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tsukamoto, S., Tane, K., Ohta, T., Matsunaga, S., Fusetani, N. & van Soest, R. W. M. (2001). J. Nat. Prod.64, 1576–1578. [PubMed]
  • Witherup, K. R., Ranson, R. W., Graham, A. C., Barnard, A. M., Salvatore, M. J., Limma, W. C., Anderson, P. S., Pitzenberger, S. M. & Varga, S. L. (1995). J. Am. Chem. Soc.117, 6682–6685.
  • Wright, C. W., Addac-Kyereme, J., Breen, A. G., Brown, J. E., Cox, M. F., Croft, S. L., Gokcek, Y., Kendrick, H., Phillips, R. M. & Pollet, P. L. (2001). J. Med. Chem.44, 3187–3194. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography