PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2151.
Published online 2008 October 22. doi:  10.1107/S1600536808031139
PMCID: PMC2959757

1,3,4,6-Tetra­chloro-7,7-bis­(4-chloro­phen­yl)bicyclo­[4.2.0]oct-3-ene-2,5-dione

Abstract

The title compound, C20H10Cl6O2, a quinone derivative, was obtained by the irradiation of 2,3,5,6-tetra­chloro­benzo­quinone and 4,4′-(ethene-1,1-di­yl)bis­(chloro­benzene). The six- and four-membered rings are fused in a cis configuration. The dihedral angle between them is 53.4 (3)°.

Related literature

For related literature, see: Eckert & Goez (1994 [triangle]); Miyashi et al. (1985 [triangle]); Schenk (1960 [triangle]); Xu, Song et al. (1994 [triangle]); Xu, Wang et al. 1994 [triangle]); Xue et al. (2000 [triangle]). For a related structure, see: Braun et al. (1999 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-64-o2151-scheme1.jpg

Experimental

Crystal data

  • C20H10Cl6O2
  • M r = 494.98
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2151-efi1.jpg
  • a = 8.6710 (17) Å
  • b = 9.6850 (19) Å
  • c = 12.864 (3) Å
  • α = 105.49 (3)°
  • β = 97.11 (3)°
  • γ = 102.68 (3)°
  • V = 996.4 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.88 mm−1
  • T = 293 (2) K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (SHELXTL; Sheldrick, 2008 [triangle]) T min = 0.779, T max = 0.917
  • 3879 measured reflections
  • 3619 independent reflections
  • 2787 reflections with I > 2σ(I)
  • R int = 0.049
  • 3 standard reflections every 200 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066
  • wR(F 2) = 0.192
  • S = 1.00
  • 3619 reflections
  • 253 parameters
  • H-atom parameters constrained
  • Δρmax = 0.66 e Å−3
  • Δρmin = −0.57 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms, 1993 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808031139/bt2797sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031139/bt2797Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Program for Young Excellent Talents in Southeast University for financial support.

supplementary crystallographic information

Comment

The reactions of the high potential 2,3,5,6-tetrachlorobenzoquinone with alkenes display varied reaction sites and regioselectivity, depending on the structure of the alkenes and reaction conditions (Schenk 1960; Miyashi et al. 1985; Eckert & Goez 1994; Xu, Song et al. 1994; Xu, Wang et al. 1994). While irradiation of a benzene solution of 2,3,5,6-tetrachlorobenzoquinone and 4,4'-(ethene-1,1-diyl)bis(chlorobenzene) with light of wavelength longer than 400 nm resulted in formation products of the title compound as a yellow solid (Xue et al. 2000). The yellow crystals were obtained by recrystallization of these solids from petroleum ether-chloroform.

The title compound, C20H10Cl6O2, is a quinone derivative. In the quinone, the distances of the C=O bonds are 1.191 (7) and 1.199 (7) Å, which are considered to to have full double-bond character. Meanwhile, the distances of C1—C2 and C5—C6 are, respectively, 1.478 (9) and 1.475 (8) Å, which are a little longer than that of C1=C6 (1.354 (9) Å), but shorter than those of C—C bonds (1.527 (8)–1.560 (7) Å). This shows that C1—C2 and C5—C6 bonds both have part double-bond character.

Experimental

Irradiation of a benzene solution of 2,3,5,6-tetrachlorobenzoquinone (0.05 mol L-1) and 4,4'-(ethene-1,1-diyl)bis(chlorobenzene) (0.10 mol L-1) with light of wavelength longer than 400 nm for 10 h resulted in complete consumption of 2,3,5,6-tetrachlorobenzoquinone and the formation of products 1,3,4,6-tetrachloro-7,7-bis(4-chlorophenyl)bicyclo[4.2.0]oct-3-ene-2,5-dione. Recrystallization from petroleum ether (bp 60–90 °) and chloroform gave a slightly yellow crystal.

Refinement

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 times Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound with 30% displacement ellipsoids.

Crystal data

C20H10Cl6O2Z = 2
Mr = 494.98F(000) = 496
Triclinic, P1Dx = 1.650 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6710 (17) ÅCell parameters from 25 reflections
b = 9.6850 (19) Åθ = 10–13°
c = 12.864 (3) ŵ = 0.88 mm1
α = 105.49 (3)°T = 293 K
β = 97.11 (3)°Block, yellow
γ = 102.68 (3)°0.30 × 0.20 × 0.10 mm
V = 996.4 (3) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer2787 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.049
graphiteθmax = 25.3°, θmin = 1.7°
ω/2θ scansh = −10→10
Absorption correction: ψ scan (SHELXTL; Sheldrick, 2008)k = −11→11
Tmin = 0.779, Tmax = 0.917l = 0→15
3879 measured reflections3 standard reflections every 200 reflections
3619 independent reflections intensity decay: none

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.06P)2 + 6P] where P = (Fo2 + 2Fc2)/3
3619 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = −0.57 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.3758 (2)0.1746 (2)0.61309 (16)0.0752 (6)
Cl20.0143 (2)−0.07268 (16)0.83090 (14)0.0527 (4)
Cl30.4819 (2)0.4713 (2)0.81185 (19)0.0761 (6)
Cl40.25830 (19)0.20039 (18)1.01117 (12)0.0524 (4)
Cl5−0.2014 (3)0.5682 (2)0.53637 (17)0.0788 (6)
Cl6−0.7475 (2)−0.30216 (19)0.73595 (17)0.0653 (5)
O10.0754 (6)−0.0161 (5)0.6230 (4)0.0625 (12)
O20.2265 (5)0.4901 (4)0.9419 (4)0.0574 (11)
C10.2697 (7)0.2059 (7)0.7168 (5)0.0444 (13)
C20.1230 (7)0.0867 (6)0.7046 (4)0.0409 (13)
C30.0404 (6)0.1008 (6)0.8037 (4)0.0365 (11)
C40.1223 (7)0.2309 (6)0.9110 (4)0.0382 (12)
C50.2210 (6)0.3667 (6)0.8877 (4)0.0384 (12)
C60.3165 (6)0.3339 (6)0.8013 (5)0.0422 (13)
C7−0.0468 (6)0.2385 (6)0.9327 (4)0.0385 (12)
H7A−0.08510.18190.98060.046*
H7B−0.05800.33890.95770.046*
C8−0.1175 (6)0.1593 (6)0.8105 (4)0.0337 (11)
C9−0.1295 (6)0.2656 (6)0.7408 (4)0.0360 (11)
C10−0.1477 (7)0.2165 (6)0.6274 (5)0.0449 (13)
H10A−0.14630.11930.59320.054*
C11−0.1680 (9)0.3087 (7)0.5634 (5)0.0554 (16)
H11A−0.17660.27470.48760.067*
C12−0.1752 (7)0.4491 (6)0.6133 (5)0.0445 (13)
C13−0.1599 (7)0.5022 (6)0.7252 (5)0.0452 (13)
H13A−0.16300.59910.75850.054*
C14−0.1399 (7)0.4087 (6)0.7877 (5)0.0459 (14)
H14A−0.13320.44320.86330.055*
C15−0.2792 (6)0.0423 (6)0.7864 (4)0.0341 (11)
C16−0.3207 (7)−0.0869 (6)0.6989 (5)0.0441 (13)
H16A−0.2506−0.10290.65050.053*
C17−0.4660 (7)−0.1935 (7)0.6820 (5)0.0493 (14)
H17A−0.4930−0.28010.62290.059*
C18−0.5684 (7)−0.1687 (6)0.7538 (5)0.0431 (13)
C19−0.5304 (7)−0.0393 (7)0.8409 (5)0.0487 (14)
H19A−0.6005−0.02320.88930.058*
C20−0.3883 (7)0.0644 (6)0.8548 (4)0.0421 (13)
H20A−0.36420.15270.91220.050*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0764 (12)0.0926 (14)0.0673 (11)0.0278 (10)0.0554 (10)0.0190 (10)
Cl20.0647 (10)0.0394 (8)0.0665 (10)0.0226 (7)0.0264 (8)0.0234 (7)
Cl30.0535 (10)0.0653 (11)0.1098 (16)0.0045 (8)0.0405 (10)0.0250 (10)
Cl40.0565 (9)0.0623 (9)0.0436 (8)0.0229 (7)0.0147 (6)0.0167 (7)
Cl50.1310 (18)0.0587 (10)0.0781 (12)0.0495 (11)0.0479 (12)0.0402 (10)
Cl60.0518 (9)0.0553 (10)0.0947 (13)0.0112 (7)0.0326 (9)0.0267 (9)
O10.080 (3)0.054 (3)0.049 (3)0.019 (2)0.038 (2)−0.003 (2)
O20.069 (3)0.037 (2)0.064 (3)0.014 (2)0.032 (2)0.003 (2)
C10.050 (3)0.052 (3)0.043 (3)0.025 (3)0.031 (3)0.015 (3)
C20.048 (3)0.049 (3)0.039 (3)0.030 (3)0.026 (2)0.014 (3)
C30.048 (3)0.034 (3)0.036 (3)0.019 (2)0.023 (2)0.011 (2)
C40.047 (3)0.034 (3)0.035 (3)0.013 (2)0.018 (2)0.005 (2)
C50.036 (3)0.038 (3)0.039 (3)0.010 (2)0.014 (2)0.005 (2)
C60.032 (3)0.047 (3)0.052 (3)0.014 (2)0.015 (2)0.017 (3)
C70.047 (3)0.048 (3)0.029 (3)0.023 (2)0.019 (2)0.011 (2)
C80.042 (3)0.038 (3)0.031 (2)0.021 (2)0.021 (2)0.012 (2)
C90.044 (3)0.035 (3)0.040 (3)0.020 (2)0.026 (2)0.014 (2)
C100.067 (4)0.037 (3)0.040 (3)0.028 (3)0.023 (3)0.010 (2)
C110.091 (5)0.045 (3)0.044 (3)0.033 (3)0.034 (3)0.016 (3)
C120.047 (3)0.036 (3)0.058 (4)0.014 (2)0.023 (3)0.018 (3)
C130.055 (3)0.025 (3)0.055 (3)0.013 (2)0.023 (3)0.005 (2)
C140.060 (4)0.039 (3)0.046 (3)0.021 (3)0.031 (3)0.010 (2)
C150.041 (3)0.035 (3)0.031 (3)0.012 (2)0.015 (2)0.013 (2)
C160.048 (3)0.043 (3)0.044 (3)0.015 (2)0.029 (3)0.006 (2)
C170.046 (3)0.042 (3)0.054 (4)0.011 (3)0.019 (3)0.003 (3)
C180.038 (3)0.047 (3)0.051 (3)0.014 (2)0.013 (2)0.022 (3)
C190.049 (3)0.057 (4)0.054 (3)0.024 (3)0.035 (3)0.021 (3)
C200.050 (3)0.043 (3)0.039 (3)0.020 (3)0.021 (2)0.011 (2)

Geometric parameters (Å, °)

Cl1—C11.712 (5)C9—C141.384 (7)
Cl2—C31.779 (5)C9—C101.385 (7)
Cl3—C61.693 (6)C10—C111.390 (8)
Cl4—C41.766 (6)C10—H10A0.9300
Cl5—C121.740 (6)C11—C121.359 (8)
Cl6—C181.734 (6)C11—H11A0.9300
O1—C21.190 (7)C12—C131.372 (8)
O2—C51.200 (6)C13—C141.385 (8)
C1—C61.354 (8)C13—H13A0.9300
C1—C21.478 (8)C14—H14A0.9300
C2—C31.528 (7)C15—C201.382 (7)
C3—C41.560 (7)C15—C161.383 (7)
C3—C81.596 (7)C16—C171.393 (8)
C4—C51.526 (7)C16—H16A0.9300
C4—C71.540 (7)C17—C181.370 (8)
C5—C61.474 (7)C17—H17A0.9300
C7—C81.532 (7)C18—C191.383 (8)
C7—H7A0.9700C19—C201.365 (8)
C7—H7B0.9700C19—H19A0.9300
C8—C151.534 (7)C20—H20A0.9300
C8—C91.545 (7)
C6—C1—C2123.4 (5)C14—C9—C10117.1 (5)
C6—C1—Cl1121.3 (5)C14—C9—C8121.3 (5)
C2—C1—Cl1115.2 (4)C10—C9—C8121.2 (5)
O1—C2—C1121.5 (5)C9—C10—C11121.7 (5)
O1—C2—C3122.3 (5)C9—C10—H10A119.1
C1—C2—C3116.1 (5)C11—C10—H10A119.1
C2—C3—C4118.3 (5)C12—C11—C10119.0 (6)
C2—C3—C8123.0 (4)C12—C11—H11A120.5
C4—C3—C886.8 (4)C10—C11—H11A120.5
C2—C3—Cl2106.0 (3)C11—C12—C13121.4 (5)
C4—C3—Cl2110.3 (4)C11—C12—Cl5120.6 (5)
C8—C3—Cl2111.5 (3)C13—C12—Cl5118.0 (4)
C5—C4—C7115.4 (4)C12—C13—C14118.8 (5)
C5—C4—C3112.4 (4)C12—C13—H13A120.6
C7—C4—C388.4 (4)C14—C13—H13A120.6
C5—C4—Cl4103.3 (4)C9—C14—C13121.9 (5)
C7—C4—Cl4118.9 (4)C9—C14—H14A119.0
C3—C4—Cl4118.7 (4)C13—C14—H14A119.0
O2—C5—C6123.6 (5)C20—C15—C16117.9 (5)
O2—C5—C4121.0 (5)C20—C15—C8119.4 (5)
C6—C5—C4115.2 (5)C16—C15—C8122.6 (4)
C1—C6—C5122.0 (5)C15—C16—C17121.0 (5)
C1—C6—Cl3122.7 (4)C15—C16—H16A119.5
C5—C6—Cl3115.2 (4)C17—C16—H16A119.5
C8—C7—C489.8 (4)C18—C17—C16119.0 (5)
C8—C7—H7A113.7C18—C17—H17A120.5
C4—C7—H7A113.7C16—C17—H17A120.5
C8—C7—H7B113.7C17—C18—C19120.9 (5)
C4—C7—H7B113.7C17—C18—Cl6119.6 (5)
H7A—C7—H7B110.9C19—C18—Cl6119.5 (4)
C7—C8—C15114.9 (4)C20—C19—C18119.0 (5)
C7—C8—C9114.1 (4)C20—C19—H19A120.5
C15—C8—C9109.7 (4)C18—C19—H19A120.5
C7—C8—C387.4 (4)C19—C20—C15122.0 (5)
C15—C8—C3117.2 (4)C19—C20—H20A119.0
C9—C8—C3112.1 (4)C15—C20—H20A119.0
C6—C1—C2—O1171.0 (6)C4—C3—C8—C7−20.4 (4)
Cl1—C1—C2—O1−6.9 (8)Cl2—C3—C8—C790.1 (4)
C6—C1—C2—C3−11.0 (8)C2—C3—C8—C15100.7 (6)
Cl1—C1—C2—C3171.1 (4)C4—C3—C8—C15−137.3 (4)
O1—C2—C3—C4173.7 (5)Cl2—C3—C8—C15−26.7 (5)
C1—C2—C3—C4−4.3 (7)C2—C3—C8—C9−27.4 (7)
O1—C2—C3—C8−80.5 (7)C4—C3—C8—C994.6 (4)
C1—C2—C3—C8101.6 (6)Cl2—C3—C8—C9−154.9 (4)
O1—C2—C3—Cl249.4 (7)C7—C8—C9—C14−25.0 (7)
C1—C2—C3—Cl2−128.6 (4)C15—C8—C9—C14105.5 (6)
C2—C3—C4—C529.4 (6)C3—C8—C9—C14−122.4 (5)
C8—C3—C4—C5−96.7 (4)C7—C8—C9—C10162.0 (5)
Cl2—C3—C4—C5151.6 (4)C15—C8—C9—C10−67.4 (6)
C2—C3—C4—C7146.4 (5)C3—C8—C9—C1064.7 (7)
C8—C3—C4—C720.3 (4)C14—C9—C10—C112.9 (9)
Cl2—C3—C4—C7−91.5 (4)C8—C9—C10—C11176.2 (6)
C2—C3—C4—Cl4−91.2 (5)C9—C10—C11—C12−2.1 (10)
C8—C3—C4—Cl4142.7 (4)C10—C11—C12—C131.2 (10)
Cl2—C3—C4—Cl430.9 (5)C10—C11—C12—Cl5−179.7 (5)
C7—C4—C5—O244.0 (7)C11—C12—C13—C14−1.2 (9)
C3—C4—C5—O2143.4 (5)Cl5—C12—C13—C14179.7 (5)
Cl4—C4—C5—O2−87.4 (6)C10—C9—C14—C13−3.0 (9)
C7—C4—C5—C6−140.6 (5)C8—C9—C14—C13−176.2 (5)
C3—C4—C5—C6−41.2 (6)C12—C13—C14—C92.2 (9)
Cl4—C4—C5—C688.0 (5)C7—C8—C15—C2034.1 (7)
C2—C1—C6—C5−1.7 (9)C9—C8—C15—C20−96.0 (5)
Cl1—C1—C6—C5176.1 (4)C3—C8—C15—C20134.7 (5)
C2—C1—C6—Cl3−178.1 (4)C7—C8—C15—C16−145.2 (5)
Cl1—C1—C6—Cl3−0.3 (8)C9—C8—C15—C1684.8 (6)
O2—C5—C6—C1−155.5 (6)C3—C8—C15—C16−44.6 (7)
C4—C5—C6—C129.3 (8)C20—C15—C16—C17−1.8 (9)
O2—C5—C6—Cl321.2 (8)C8—C15—C16—C17177.4 (5)
C4—C5—C6—Cl3−154.1 (4)C15—C16—C17—C180.0 (9)
C5—C4—C7—C893.0 (5)C16—C17—C18—C191.0 (9)
C3—C4—C7—C8−21.1 (4)C16—C17—C18—Cl6−178.5 (5)
Cl4—C4—C7—C8−143.4 (4)C17—C18—C19—C20−0.1 (9)
C4—C7—C8—C15139.6 (4)Cl6—C18—C19—C20179.4 (5)
C4—C7—C8—C9−92.5 (5)C18—C19—C20—C15−1.8 (9)
C4—C7—C8—C320.7 (4)C16—C15—C20—C192.8 (8)
C2—C3—C8—C7−142.4 (5)C8—C15—C20—C19−176.5 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2797).

References

  • Braun, M., Christl, M., Peters, E.-M. & Peters, K. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 2813–2820.
  • Eckert, G. & Goez, M. (1994). J. Am. Chem. Soc.116, 11999–12009.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. (1993). XCAD4 University of Marburg, Germany.
  • Miyashi, T., Takahashi, Y., Mukai, T., Roth, H. D. & Schilling, M. L. M. (1985). J. Am. Chem. Soc.107, 1079–1080.
  • Schenk, G. O. Z. (1960). Electrochemistry, 64, 997–1011.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xu, J. H., Song, Y. L., Zhang, Z. G., Wang, L. C. & Xu, J. W. (1994). Tetrahedron, 50, 1199–1210.
  • Xu, J. H., Wang, L. C., Xu, J. W., Yan, B. Z. & Yuan, H. C. (1994). J. Chem. Soc. Perkin Trans. 1, pp. 571–577.
  • Xue, J., Xu, J.-W., Yang, L. & Xu, J.-H. (2000). J. Org. Chem.65, 30–40. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography