PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): m1458.
Published online 2008 October 25. doi:  10.1107/S1600536808033886
PMCID: PMC2959752

Bis(μ-2-hydroxy­benozato)-κ3 O,O′:O′;κ3 O:O,O′-bis­[(2-hydroxy­benozato-κ2 O,O′)(1,10-phenanthroline-κ2 N,N′)cadmium(II)]

Abstract

The dinuclear title compound, [Cd2(C7H5O3)4(C12H8N2)2], is located on a crystallographic rotation twofold axis. The two CdII ions are connected by two tridentate bridging 2-hydroxy­benzoate anions. Each CdII ion is seven-coordinated by five O atoms from three 2-hydroxy­benzoate ligands and two N atoms from 1,10-phenanthroline. The 2-hydroxy­benzoate mol­ecules adopt two kinds of coordination mode, bidentate chelating and tridentate bridging–chelating. Intra­molecular hydrogen bonds between hydr­oxy and carboxyl­ate groups from 2-hydroxy­benzoate groups and π–π stacking interactions between parallel 1,10-phenanthroline ligands [centroid–centroid distances = 3.707 (3) and 3.842 (3) Å] are observed. Furthermore, adjacent benzene rings from 2-hydroxy­benzoate ligands are involved in π–π inter­actions with inter­planar distances of 3.642 (3) Å, thereby forming a chain along the a axis direction.

Related literature

For general background, see: Horike et al. (2007 [triangle]); Humphrey et al. (2007 [triangle]); Sudik et al. (2005 [triangle]); Zhang et al. (2008 [triangle]). For related structures, see: Du et al. (2007 [triangle]); Pan et al. (2006 [triangle]); Tomas et al. (2006 [triangle]). For related literature, see: Tong et al. (1999 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-64-m1458-scheme1.jpg

Experimental

Crystal data

  • [Cd2(C7H5O3)4(C12H8N2)2]
  • M r = 1133.65
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1458-efi4.jpg
  • a = 27.9391 (19) Å
  • b = 10.3078 (7) Å
  • c = 20.468 (2) Å
  • β = 130.770 (1)°
  • V = 4464.2 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.03 mm−1
  • T = 298 (2) K
  • 0.30 × 0.25 × 0.18 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.748, T max = 0.837
  • 11963 measured reflections
  • 4390 independent reflections
  • 3671 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.067
  • S = 1.06
  • 4390 reflections
  • 316 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808033886/zl2145sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808033886/zl2145Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge financial support from the Scientific Research Project for Comprehensive Talent Cultivation of South China Normal University (2008–2009).

supplementary crystallographic information

Comment

Transition metal complexes with substituted benzoate ligands have attracted wide attention in past decades, owing to their variable high-dimensional architectures and potential applications for gas absorption and separation, and catalysis, etc [Du et al., 2007; Horike et al., 2007; Humphrey et al., 2007; Pan et al., 2006; Sudik et al., 2005; Tomas et al., 2006; Zhang et al., 2008]. Herein, we report the synthesis and crystal structure of the title compound, obtained by the reaction of Sm(NO3)3, Cd(CH3COO)2, 1,10-phenanthroline and 2-hydroxybenzoic acid. No samarium was however incorporated in the crystals isolated and the title compound is a dinuclear CdII complex of 2-hydroxybenzoic acid and 1,10-phenanthroline. A perspective view of the complex, showing the atomic numbering scheme, is depicted in Fig. 1. Each CdII is seven-coordinated by five oxygen atoms from three 2-hydroxybenzoate ligands, and two nitrogen atoms from 1,10-phenanthroline, and the coordination geometry around the CdII ion may be described as a distorted mono-capped trigonal prism. Two adjacent CdII units are connected by two bridging 2-hydroxybenzoate anions to generate a dinuclear complex. The 2-hydroxybenzoate molecules adopt two kinds of coordination modes, bidentate chelating and tridentate bridging-chelating. The inequivalence between the mono and bidentate bridging oxygen atoms is evident from the Cd—O bond distances: the Cd—O distances of the bridging oxygen atoms are longer than those of the monodentate oxygen atoms: Cd1—O5 is 2.421 (2) Å and Cd1—O5i is 2.491 (2) Å, while Cd1—O1, Cd—O2 and Cd—O4 are 2.399 (2), 2.327 (2) and 2.363 (2) Å, respectively (symmetry code: (i): -x, y, 1/2 - z).

Intramolecular hydrogen bonds between hydroxyl and carboxylate groups from the 2-hydroxybenzoates [O6···O4 = 2.579 (3) Å and O3···O2 = 2.576 (2) Å, Table 1] and π-π stacking attractions between parallel 1,10-phenanthroline ligands [centroid to centroid distances: 3.707 (3) and 3.842 (3) Å] are clearly observed in this complex, which may contribute to its stability.

Furthermore, adjacent phenyl rings from 2-hydroxybenzoate ligands are also involved in π-π stacking interactions by partial overlap of π-electron densities (Tong et al., 1999). The centroid-centroid separation between rings A (atoms C14—C19) and Bj [atoms C21—C26; symmetry code: (j): 1/2 + x, 1/2 - y, 1/2 + z] is 3.642 (3) Å. Considering these π-π intermolecular attractions, they imply the formation of a one-dimensional chain along the direction of the a-axis. (Fig. 2).

Experimental

A sample of Sm(NO3)3.6H2O (0.090 g, 0.20 mmol), Cd(CH3COO)2.2H2O (0.052 g, 0.20 mmol), 2-hydroxybenzoic acid (0.070 g, 0.50 mmol), 1,10-phenanthroline (0.036 g, 0.20 mmol) and distilled water (8 ml) were mixed in a 15 ml Teflon-lined stainless steel vessel and the pH value was adjusted to about 5 with NaOH. Then, the mixture was heated to 393 K under autogenous pressure for 48 h, and cooled slowly to room temperature. Colorless block-like crystals suitable for X-ray single-crystal diffraction analysis were obtained by filtration and washed with distilled water and ethanol.

Refinement

All H atoms were placed in calculated positions and were allowed to ride on their parent atoms; C—H = 0.93 (aromatic C—H) and O—H = 0.82 (hydroxyl) Å; Uiso(H) = 1.2 Ueq (C) and Uiso (H) = 1.5 Ueq (O).

Figures

Fig. 1.
An ORTEP-3 (Farrugia, 1997) plot of the title compound with displacement ellipsoids at the 30% probability level. All H atoms are omitted for clarity.
Fig. 2.
A packing diagram of the title compound, showing a one-dimensional chain-like structure generated by the intermolecular π-π interactions. All H atoms are omitted for clarity. [Symmetry codes: (j): 1/2 + x, 1/2 - y, 1/2 + z].

Crystal data

[Cd2(C7H5O3)4(C12H8N2)2]F(000) = 2272
Mr = 1133.65Dx = 1.687 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4082 reflections
a = 27.9391 (19) Åθ = 1.9–27.4°
b = 10.3078 (7) ŵ = 1.03 mm1
c = 20.468 (2) ÅT = 298 K
β = 130.770 (1)°Block, colorless
V = 4464.2 (6) Å30.30 × 0.25 × 0.18 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer4390 independent reflections
Radiation source: fine-focus sealed tube3671 reflections with I > 2σ(I)
graphiteRint = 0.027
[var phi] and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −34→23
Tmin = 0.748, Tmax = 0.837k = −12→12
11963 measured reflectionsl = −18→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0314P)2 + 1.2193P] where P = (Fo2 + 2Fc2)/3
4390 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.13185 (12)0.5408 (3)0.40308 (16)0.0477 (6)
H10.14360.46250.43260.057*
C20.15571 (15)0.6556 (3)0.4506 (2)0.0609 (8)
H20.18320.65340.51050.073*
C30.13835 (14)0.7702 (3)0.40838 (19)0.0644 (8)
H30.15360.84740.43940.077*
C40.09731 (13)0.7733 (3)0.31771 (18)0.0491 (7)
C50.07771 (16)0.8903 (3)0.2685 (2)0.0652 (9)
H50.09200.96970.29710.078*
C60.03932 (15)0.8881 (3)0.1826 (2)0.0604 (8)
H60.02780.96570.15240.072*
C70.01567 (12)0.7686 (2)0.13628 (17)0.0448 (6)
C8−0.02500 (12)0.7611 (3)0.04561 (18)0.0517 (7)
H8−0.03790.83670.01310.062*
C9−0.04538 (13)0.6440 (3)0.00554 (18)0.0510 (7)
H9−0.07190.6383−0.05420.061*
C10−0.02569 (11)0.5324 (3)0.05582 (16)0.0438 (6)
H10−0.03990.45240.02810.053*
C110.03313 (11)0.6513 (2)0.18132 (16)0.0352 (5)
C120.07583 (11)0.6531 (2)0.27488 (16)0.0362 (5)
C130.16216 (11)0.2707 (2)0.25844 (15)0.0393 (6)
C140.22134 (11)0.2278 (2)0.27919 (16)0.0407 (6)
C150.26018 (13)0.1335 (3)0.34283 (19)0.0518 (7)
C160.31708 (14)0.1016 (3)0.3645 (2)0.0701 (9)
H160.34310.04000.40710.084*
C170.33538 (17)0.1594 (4)0.3243 (3)0.0817 (12)
H170.37370.13620.33950.098*
C180.29839 (16)0.2517 (4)0.2617 (3)0.0750 (10)
H180.31140.29080.23460.090*
C190.24122 (14)0.2856 (3)0.2392 (2)0.0558 (7)
H190.21590.34800.19690.067*
C20−0.05515 (11)0.2173 (2)0.10588 (15)0.0382 (5)
C21−0.11314 (11)0.1442 (2)0.03654 (15)0.0361 (5)
C22−0.11635 (12)0.0730 (2)−0.02440 (15)0.0432 (6)
C23−0.17163 (14)0.0033 (3)−0.08804 (16)0.0565 (8)
H23−0.1743−0.0454−0.12850.068*
C24−0.22170 (13)0.0073 (3)−0.09029 (18)0.0607 (8)
H24−0.2581−0.0396−0.13240.073*
C25−0.21937 (13)0.0784 (3)−0.03221 (18)0.0576 (8)
H25−0.25410.0811−0.03530.069*
C26−0.16526 (12)0.1463 (2)0.03120 (17)0.0451 (6)
H26−0.16360.19440.07110.054*
Cd10.057575 (8)0.350425 (15)0.231588 (11)0.03562 (7)
N10.09300 (9)0.53845 (19)0.31732 (12)0.0372 (4)
N20.01241 (8)0.53497 (18)0.14148 (12)0.0361 (4)
O10.13009 (8)0.36071 (17)0.20625 (12)0.0517 (5)
O20.14511 (8)0.21631 (18)0.29634 (11)0.0497 (5)
O30.24496 (10)0.0733 (2)0.38541 (14)0.0733 (6)
H3A0.20830.09070.36250.110*
O4−0.00846 (8)0.21515 (17)0.10927 (12)0.0527 (5)
O50.05244 (8)0.28218 (18)0.34009 (12)0.0516 (5)
O6−0.06878 (9)0.06944 (18)−0.02577 (12)0.0582 (5)
H6A−0.03970.11570.01280.087*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0451 (14)0.0544 (16)0.0402 (15)0.0009 (12)0.0264 (12)0.0023 (12)
C20.0598 (19)0.074 (2)0.0388 (15)−0.0100 (15)0.0276 (14)−0.0083 (14)
C30.075 (2)0.0561 (19)0.0585 (19)−0.0184 (16)0.0419 (17)−0.0227 (15)
C40.0547 (16)0.0434 (15)0.0540 (17)−0.0046 (12)0.0375 (14)−0.0069 (12)
C50.083 (2)0.0347 (15)0.079 (2)−0.0069 (15)0.0531 (19)−0.0092 (15)
C60.081 (2)0.0320 (14)0.074 (2)0.0066 (14)0.0534 (19)0.0109 (14)
C70.0488 (14)0.0373 (14)0.0556 (16)0.0067 (11)0.0373 (13)0.0082 (12)
C80.0521 (16)0.0519 (17)0.0555 (17)0.0147 (13)0.0370 (14)0.0210 (14)
C90.0466 (15)0.0615 (19)0.0398 (15)0.0083 (13)0.0260 (13)0.0099 (13)
C100.0407 (13)0.0445 (14)0.0398 (14)0.0001 (11)0.0235 (12)0.0003 (11)
C110.0358 (12)0.0347 (13)0.0438 (14)0.0014 (9)0.0298 (12)0.0025 (10)
C120.0361 (12)0.0362 (13)0.0426 (14)−0.0019 (10)0.0284 (11)−0.0020 (10)
C130.0359 (13)0.0407 (14)0.0367 (13)−0.0027 (10)0.0217 (11)−0.0052 (11)
C140.0380 (13)0.0415 (14)0.0453 (14)−0.0039 (10)0.0284 (12)−0.0091 (11)
C150.0413 (15)0.0504 (17)0.0551 (17)0.0027 (12)0.0277 (14)−0.0097 (13)
C160.0430 (16)0.072 (2)0.079 (2)0.0128 (15)0.0329 (17)−0.0067 (18)
C170.052 (2)0.089 (3)0.110 (3)−0.0032 (18)0.055 (2)−0.035 (2)
C180.080 (2)0.082 (2)0.106 (3)−0.026 (2)0.079 (2)−0.032 (2)
C190.0632 (18)0.0562 (18)0.0655 (19)−0.0087 (14)0.0498 (16)−0.0096 (14)
C200.0415 (13)0.0274 (12)0.0391 (13)−0.0002 (10)0.0233 (11)0.0027 (10)
C210.0396 (13)0.0301 (12)0.0340 (12)−0.0005 (9)0.0219 (11)0.0025 (9)
C220.0543 (15)0.0336 (14)0.0392 (14)0.0038 (11)0.0295 (12)0.0044 (11)
C230.0702 (19)0.0434 (16)0.0355 (15)−0.0025 (13)0.0256 (14)−0.0060 (12)
C240.0474 (17)0.0550 (18)0.0412 (16)−0.0091 (13)0.0121 (13)−0.0018 (13)
C250.0417 (15)0.0582 (18)0.0542 (18)−0.0056 (13)0.0231 (14)0.0044 (14)
C260.0446 (14)0.0438 (15)0.0421 (14)0.0004 (11)0.0261 (12)0.0022 (11)
Cd10.03456 (11)0.03147 (11)0.03994 (12)0.00079 (7)0.02394 (9)0.00196 (7)
N10.0367 (10)0.0370 (11)0.0375 (11)0.0005 (8)0.0240 (9)0.0023 (9)
N20.0336 (10)0.0365 (11)0.0373 (11)0.0004 (8)0.0228 (9)0.0009 (8)
O10.0432 (10)0.0568 (12)0.0545 (11)0.0086 (8)0.0316 (9)0.0137 (9)
O20.0457 (10)0.0594 (12)0.0537 (11)0.0101 (9)0.0367 (9)0.0135 (9)
O30.0634 (13)0.0808 (16)0.0761 (15)0.0276 (11)0.0457 (12)0.0327 (13)
O40.0434 (10)0.0479 (11)0.0676 (13)−0.0064 (8)0.0367 (10)−0.0098 (9)
O50.0585 (11)0.0506 (11)0.0498 (11)0.0123 (9)0.0373 (10)0.0157 (9)
O60.0736 (13)0.0545 (12)0.0648 (13)−0.0001 (10)0.0532 (11)−0.0074 (10)

Geometric parameters (Å, °)

C1—N11.331 (3)C16—H160.9300
C1—C21.394 (4)C17—C181.373 (5)
C1—H10.9300C17—H170.9300
C2—C31.353 (4)C18—C191.388 (4)
C2—H20.9300C18—H180.9300
C3—C41.407 (4)C19—H190.9300
C3—H30.9300C20—O5i1.252 (3)
C4—C121.406 (3)C20—O41.260 (3)
C4—C51.432 (4)C20—C211.484 (3)
C5—C61.335 (5)C21—C261.388 (4)
C5—H50.9300C21—C221.399 (3)
C6—C71.426 (4)C22—O61.348 (3)
C6—H60.9300C22—C231.404 (4)
C7—C111.401 (3)C23—C241.370 (4)
C7—C81.410 (4)C23—H230.9300
C8—C91.358 (4)C24—C251.362 (4)
C8—H80.9300C24—H240.9300
C9—C101.395 (3)C25—C261.378 (4)
C9—H90.9300C25—H250.9300
C10—N21.331 (3)C26—H260.9300
C10—H100.9300Cd1—O22.3271 (16)
C11—N21.349 (3)Cd1—N12.355 (2)
C11—C121.451 (4)Cd1—N22.3606 (19)
C12—N11.355 (3)Cd1—O42.3630 (18)
C13—O11.247 (3)Cd1—O12.3993 (19)
C13—O21.275 (3)Cd1—O52.4214 (18)
C13—C141.480 (3)Cd1—O5i2.4911 (18)
C14—C191.388 (4)O3—H3A0.8199
C14—C151.405 (4)O5—C20i1.252 (3)
C15—O31.345 (4)O5—Cd1i2.4911 (18)
C15—C161.382 (4)O6—H6A0.8200
C16—C171.357 (6)
N1—C1—C2122.8 (3)O5i—C20—O4119.8 (2)
N1—C1—H1118.6O5i—C20—C21121.0 (2)
C2—C1—H1118.6O4—C20—C21119.2 (2)
C3—C2—C1119.1 (3)C26—C21—C22119.0 (2)
C3—C2—H2120.4C26—C21—C20120.1 (2)
C1—C2—H2120.4C22—C21—C20120.9 (2)
C2—C3—C4120.4 (3)O6—C22—C21122.9 (2)
C2—C3—H3119.8O6—C22—C23118.0 (2)
C4—C3—H3119.8C21—C22—C23119.1 (3)
C12—C4—C3116.8 (3)C24—C23—C22119.8 (3)
C12—C4—C5119.5 (3)C24—C23—H23120.1
C3—C4—C5123.7 (3)C22—C23—H23120.1
C6—C5—C4121.4 (3)C25—C24—C23121.4 (3)
C6—C5—H5119.3C25—C24—H24119.3
C4—C5—H5119.3C23—C24—H24119.3
C5—C6—C7121.0 (3)C24—C25—C26119.6 (3)
C5—C6—H6119.5C24—C25—H25120.2
C7—C6—H6119.5C26—C25—H25120.2
C11—C7—C8117.0 (2)C25—C26—C21121.1 (3)
C11—C7—C6119.8 (3)C25—C26—H26119.5
C8—C7—C6123.2 (2)C21—C26—H26119.5
C9—C8—C7120.2 (2)O2—Cd1—N1106.89 (7)
C9—C8—H8119.9O2—Cd1—N2138.63 (6)
C7—C8—H8119.9N1—Cd1—N270.68 (7)
C8—C9—C10118.7 (3)O2—Cd1—O493.20 (6)
C8—C9—H9120.7N1—Cd1—O4158.83 (6)
C10—C9—H9120.7N2—Cd1—O489.92 (6)
N2—C10—C9123.1 (2)O2—Cd1—O155.09 (6)
N2—C10—H10118.4N1—Cd1—O196.97 (7)
C9—C10—H10118.4N2—Cd1—O183.78 (6)
N2—C11—C7122.8 (2)O4—Cd1—O188.99 (7)
N2—C11—C12117.8 (2)O2—Cd1—O588.55 (6)
C7—C11—C12119.4 (2)N1—Cd1—O578.67 (7)
N1—C12—C4122.7 (2)N2—Cd1—O5128.98 (6)
N1—C12—C11118.5 (2)O4—Cd1—O5109.11 (7)
C4—C12—C11118.8 (2)O1—Cd1—O5140.82 (6)
O1—C13—O2120.2 (2)O2—Cd1—O5i126.96 (6)
O1—C13—C14120.7 (2)N1—Cd1—O5i115.33 (6)
O2—C13—C14119.0 (2)N2—Cd1—O5i86.73 (6)
C19—C14—C15118.7 (3)O4—Cd1—O5i53.13 (6)
C19—C14—C13120.3 (2)O1—Cd1—O5i140.94 (6)
C15—C14—C13120.9 (2)O5—Cd1—O5i70.66 (7)
O3—C15—C16117.8 (3)C1—N1—C12118.2 (2)
O3—C15—C14122.7 (2)C1—N1—Cd1125.56 (17)
C16—C15—C14119.5 (3)C12—N1—Cd1116.05 (15)
C17—C16—C15120.7 (3)C10—N2—C11118.2 (2)
C17—C16—H16119.6C10—N2—Cd1124.98 (16)
C15—C16—H16119.6C11—N2—Cd1116.38 (15)
C16—C17—C18121.2 (3)C13—O1—Cd191.02 (15)
C16—C17—H17119.4C13—O2—Cd193.65 (15)
C18—C17—H17119.4C15—O3—H3A109.4
C17—C18—C19119.0 (3)C20—O4—Cd196.43 (15)
C17—C18—H18120.5C20i—O5—Cd1163.72 (17)
C19—C18—H18120.5C20i—O5—Cd1i90.61 (15)
C14—C19—C18120.9 (3)Cd1—O5—Cd1i99.62 (6)
C14—C19—H19119.5C22—O6—H6A109.5
C18—C19—H19119.5
N1—C1—C2—C30.8 (5)O1—Cd1—N1—C1−99.78 (19)
C1—C2—C3—C4−0.7 (5)O5—Cd1—N1—C140.75 (19)
C2—C3—C4—C120.3 (4)O5i—Cd1—N1—C1102.81 (19)
C2—C3—C4—C5−178.8 (3)O2—Cd1—N1—C12130.28 (16)
C12—C4—C5—C60.1 (5)N2—Cd1—N1—C12−6.16 (15)
C3—C4—C5—C6179.1 (3)O4—Cd1—N1—C12−30.7 (3)
C4—C5—C6—C70.8 (5)O1—Cd1—N1—C1274.72 (16)
C5—C6—C7—C11−0.4 (4)O5—Cd1—N1—C12−144.75 (17)
C5—C6—C7—C8179.9 (3)O5i—Cd1—N1—C12−82.69 (17)
C11—C7—C8—C9−0.2 (4)C9—C10—N2—C11−0.4 (4)
C6—C7—C8—C9179.4 (3)C9—C10—N2—Cd1−172.1 (2)
C7—C8—C9—C100.5 (4)C7—C11—N2—C100.7 (3)
C8—C9—C10—N2−0.2 (4)C12—C11—N2—C10−178.6 (2)
C8—C7—C11—N2−0.4 (4)C7—C11—N2—Cd1173.18 (18)
C6—C7—C11—N2179.9 (2)C12—C11—N2—Cd1−6.2 (3)
C8—C7—C11—C12178.9 (2)O2—Cd1—N2—C1084.4 (2)
C6—C7—C11—C12−0.7 (4)N1—Cd1—N2—C10178.3 (2)
C3—C4—C12—N10.1 (4)O4—Cd1—N2—C10−10.32 (19)
C5—C4—C12—N1179.3 (2)O1—Cd1—N2—C1078.67 (19)
C3—C4—C12—C11179.7 (2)O5—Cd1—N2—C10−125.16 (18)
C5—C4—C12—C11−1.2 (4)O5i—Cd1—N2—C10−63.38 (18)
N2—C11—C12—N10.4 (3)O2—Cd1—N2—C11−87.44 (18)
C7—C11—C12—N1−178.9 (2)N1—Cd1—N2—C116.44 (15)
N2—C11—C12—C4−179.1 (2)O4—Cd1—N2—C11177.81 (16)
C7—C11—C12—C41.5 (4)O1—Cd1—N2—C11−93.21 (16)
O1—C13—C14—C19−1.4 (4)O5—Cd1—N2—C1162.97 (18)
O2—C13—C14—C19−179.7 (2)O5i—Cd1—N2—C11124.74 (16)
O1—C13—C14—C15175.0 (2)O2—C13—O1—Cd11.5 (2)
O2—C13—C14—C15−3.3 (3)C14—C13—O1—Cd1−176.72 (19)
C19—C14—C15—O3179.4 (3)O2—Cd1—O1—C13−0.88 (14)
C13—C14—C15—O32.9 (4)N1—Cd1—O1—C13104.88 (15)
C19—C14—C15—C160.6 (4)N2—Cd1—O1—C13174.48 (15)
C13—C14—C15—C16−175.9 (2)O4—Cd1—O1—C13−95.49 (15)
O3—C15—C16—C17−179.6 (3)O5—Cd1—O1—C1324.28 (19)
C14—C15—C16—C17−0.8 (5)O5i—Cd1—O1—C13−108.56 (16)
C15—C16—C17—C180.5 (5)O1—C13—O2—Cd1−1.6 (2)
C16—C17—C18—C19−0.1 (5)C14—C13—O2—Cd1176.70 (18)
C15—C14—C19—C18−0.2 (4)N1—Cd1—O2—C13−85.86 (15)
C13—C14—C19—C18176.3 (2)N2—Cd1—O2—C13−6.14 (19)
C17—C18—C19—C140.0 (5)O4—Cd1—O2—C1387.38 (15)
O5i—C20—C21—C26−0.5 (3)O1—Cd1—O2—C130.86 (13)
O4—C20—C21—C26−179.4 (2)O5—Cd1—O2—C13−163.56 (15)
O5i—C20—C21—C22179.2 (2)O5i—Cd1—O2—C13132.15 (14)
O4—C20—C21—C220.3 (3)O5i—C20—O4—Cd10.7 (2)
C26—C21—C22—O6177.6 (2)C21—C20—O4—Cd1179.66 (17)
C20—C21—C22—O6−2.1 (3)O2—Cd1—O4—C20134.91 (14)
C26—C21—C22—C23−1.4 (3)N1—Cd1—O4—C20−63.3 (2)
C20—C21—C22—C23178.9 (2)N2—Cd1—O4—C20−86.37 (15)
O6—C22—C23—C24−178.3 (2)O1—Cd1—O4—C20−170.14 (15)
C21—C22—C23—C240.8 (4)O5—Cd1—O4—C2045.33 (15)
C22—C23—C24—C250.4 (4)O5i—Cd1—O4—C20−0.40 (13)
C23—C24—C25—C26−1.1 (4)O2—Cd1—O5—C20i−34.5 (6)
C24—C25—C26—C210.4 (4)N1—Cd1—O5—C20i−142.0 (6)
C22—C21—C26—C250.8 (4)N2—Cd1—O5—C20i164.6 (6)
C20—C21—C26—C25−179.5 (2)O4—Cd1—O5—C20i58.4 (6)
C2—C1—N1—C12−0.4 (4)O1—Cd1—O5—C20i−54.9 (6)
C2—C1—N1—Cd1174.0 (2)O5i—Cd1—O5—C20i95.8 (6)
C4—C12—N1—C1−0.1 (4)O2—Cd1—O5—Cd1i−162.70 (7)
C11—C12—N1—C1−179.6 (2)N1—Cd1—O5—Cd1i89.75 (7)
C4—C12—N1—Cd1−174.99 (19)N2—Cd1—O5—Cd1i36.35 (10)
C11—C12—N1—Cd15.5 (3)O4—Cd1—O5—Cd1i−69.82 (8)
O2—Cd1—N1—C1−44.2 (2)O1—Cd1—O5—Cd1i176.89 (7)
N2—Cd1—N1—C1179.3 (2)O5i—Cd1—O5—Cd1i−32.44 (8)
O4—Cd1—N1—C1154.77 (19)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O6—H6A···O40.821.862.579 (3)146
O3—H3A···O20.821.872.576 (2)143

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2145).

References

  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Du, M., Li, C. P., Zhao, X. J. & Yu, Q. (2007). CrystEngComm, 9, 1011–1028.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Horike, S., Tanaka, D., Nakagawa, K. & Kitagawa, S. (2007). Chem. Commun. pp. 3395–3397. [PubMed]
  • Humphrey, S. M., Chang, J. S., Jhung, S. H., Yoon, J. W. & Wood, P. T. (2007). Angew. Chem. Int. Ed.46, 272–275. [PubMed]
  • Pan, T.-T., Su, J.-R. & Xu, D.-J. (2006). Acta Cryst. E62, m2183–m2185.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sudik, A. C., Millward, A. R., Ockwig, N. W., Cote, A. P., Kim, J. & Yaghi, O. M. (2005). J. Am. Chem. Soc.127, 7110–7118. [PubMed]
  • Tomas, A., Retailleau, P., Viossat, B., Prange, T. & Lemoine, P. (2006). Z. Kristallogr. New Cryst. Struct.221, 517–519.
  • Tong, M. L., Lee, H. K., Chen, X. M., Huang, R. B. & Mak, T. C. W. (1999). J. Chem. Soc. Dalton Trans. pp. 3657–3659.
  • Zhang, K. L., Gao, H. Y., Qiao, N., Zhou, F. & Diao, G. W. (2008). Inorg. Chim. Acta, 361, 153–160.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography