PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2183.
Published online 2008 October 25. doi:  10.1107/S160053680803420X
PMCID: PMC2959745

5,5-Bis(4-methoxy­phen­yl)-2,8-bis­[3-(trifluoro­meth­yl)phen­yl]-5H-cyclo­penta­[2,1-b:3,4-b’]dipyridine

Abstract

The title compound, C39H26F6N2O2, showed two melting transitions 477.4 and 506.5 K in a differential scanning calorimetry (DSC) study. The first of these can be attributed to a melting phase transition arising from the rotation of two trifluoro­methyl groups. In the crystal structure, both trifluoro­methyl groups are disordered over two sites with occupancy factors of 0.660 (17) and 0.340 (17) for the major and minor orientations, respectively. The introduction of trifluoro­methyl groups inhibits π-stacking between the diaza­fluorene (cyclo­penta­[2,1-b:3,4-b’]dipyridine) units. Three short F(...)O contacts between 2.80 (3) and 2.95 (1) Å are observed in the crystal structure.

Related literature

The synthesis and thermal properties of the title compound were reported by Ono et al. (2007 [triangle]). For related literature on mol­ecular and crystal structures, including the 4,5-diaza­fluorene system, see: Ono & Saito (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2183-scheme1.jpg

Experimental

Crystal data

  • C39H26F6N2O2
  • M r = 668.62
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2183-efi1.jpg
  • a = 9.283 (2) Å
  • b = 12.357 (3) Å
  • c = 26.941 (6) Å
  • V = 3090.4 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 173 (1) K
  • 0.38 × 0.30 × 0.20 mm

Data collection

  • Rigaku/MSC Mercury CCD diffractometer
  • Absorption correction: none
  • 20599 measured reflections
  • 3171 independent reflections
  • 2849 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.146
  • S = 1.05
  • 3171 reflections
  • 498 parameters
  • 24 restraints
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2001 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680803420X/hb2809sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803420X/hb2809Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (grant No. 19550034) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The authors thank the Instrument Center of the Institute for Molecular Science for the X-ray structure analysis.

supplementary crystallographic information

Comment

The title compound, (I), was prepared as a new electron-transporting material in the study of organic electroluminescent (EL) devices (Ono et al., 2007). A differential scanning calorimetry (DSC) study of (I) revealed novel thermal behavior (Fig. 1). The first heating profile showed a first melting point of 477.4 K and a crystallization temperature of 479.7 K. After cooling, the second heating profile exhibited a second melting point of 506.5 K. Furthermore, the third heating profile displayed only a glass transition temperature of 369.3 K. The first melting point can be attributed to a phase transition arising from rotation of two trifluoromethyl groups.

The molecular structure of (I) is shown in Fig. 2. The 4,5-diazafluorene (cyclopenta[2,1-b:3,4-b']dipyridine) ring system is almost planar with an r.m.s. deviation of 0.052Å. The dihedral angles between the 4,5-diazafluorene ring system and the pendant trifluoromethylphenyl groups are 19.5 (1) ° and 62.3 (1) °. Both the trifluoromethyl groups are disordered over two sites with occupancy factors of 0.660 (17):0.340 (17). The crystal structure is characterized by an arrangement of the molecules along the c axis (Fig. 3). In the molecular arrangement, significant π–π overlapping between the 4,5-diazafluorene moieties is not found, although it was observed in the crystal of a 2,8-diphenyl derivative (Ono & Saito, 2008). Three short F···O contacts between 2.80 (3) and 2.95 (1) Å are observed in the crystal of (I).

Experimental

The title compound (I) was synthesized by the direct arylation reaction of mono-substituted compound (II), which was also prepared by the direct arylation of 5,5-bis(4-methoxyphenyl)-5H-cyclopenta[2,1-b:3,4-b']dipyridine (III). The direct arylation of compound (II) was performed as follows: nBuLi in hexane (1.60 M, 3.3 ml, 5.2 mmol) was added dropwise to a solution of 3-bromobenzotrifluoride (0.66 ml, 4.8 mmol) in dry ether (20 ml) at 195 K under nitrogen. The solution was stirred at 195 K for 30 min and at 0 °C for 30 min. Compound (II) (1.52 g, 4.0 mmol) and dry toluene (30 ml) were added to the solution at 253 K. The reaction mixture was stirred at 253 K for 30 min and at room temperature overnight. The mixture was poured into water and dichloromethane was added. The organic layer was separated and aqueous layer was extracted with dichloromethane (× 2). Manganese(IV) oxide (MnO2) (10 g) was added to the combined organic solution and the mixture was stirred for 30 min. Further, anhydrous magnesium sulfate (MgSO4) (10 g) was added and the mixture was stirred for 30 min. After filtration and condensation, the residue was chromatographed on silica gel (hexane/ethyl acetate = 3:1 v/v) to afford the title compound as a white solid (1.28 g, 39%). Colorless prisms of (I) suitable for X-ray analysis were grown from an acetonitrile solution.

Refinement

Anomalous dispersion was negligible and Friedel pairs were merged before refinement.

All the H atoms were placed in geometrically calculated positions, with C—H = 0.95 (phenyl) and 0.98 (methyl) Å, and refined using a riding model with Uiso(H) = 1.2Ueq(C) (phenyl) and 1.5Ueq(C) (methyl).

Figures

Fig. 1.
The DSC profile of (I).
Fig. 2.
The molecular structure of (I), with 50% probability displacement elipsoids for non-H atoms and H atoms are shown as small spheres of arbitrary radius. The disordered fluorine atoms (F7–F12) of the two trifluoromethyl groups are omitted for clarity. ...
Fig. 3.
The packing diagram of (I).

Crystal data

C39H26F6N2O2Dx = 1.437 Mg m3
Mr = 668.62Melting point: 483 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9363 reflections
a = 9.283 (2) Åθ = 3.0–27.5°
b = 12.357 (3) ŵ = 0.11 mm1
c = 26.941 (6) ÅT = 173 K
V = 3090.4 (12) Å3Prism, colorless
Z = 40.38 × 0.30 × 0.20 mm
F(000) = 1376

Data collection

Rigaku/MSC Mercury CCD diffractometer2849 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.040
Graphite Monochromatorθmax = 27.5°, θmin = 3.0°
Detector resolution: 14.7059 pixels mm-1h = −11→11
[var phi] and ω scansk = −15→13
20599 measured reflectionsl = −30→34
3171 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.146w = 1/[σ2(Fo2) + (0.1005P)2 + 0.7722P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.004
3171 reflectionsΔρmax = 0.28 e Å3
498 parametersΔρmin = −0.25 e Å3
24 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0027 (15)

Special details

Experimental. IR (KBr, cm-1): 1607, 1574, 1510, 1337, 1298, 1256, 1175, 1130, 1073, 1030, 837, 808, 700; 1H NMR (CDCl3, δ p.p.m): 3.78 (s, 6H), 6.81 (d, 4H, J = 8.8 Hz), 7.17 (d, 4H, J = 8.8 Hz), 7.62–7.73 (m, 4H), 7.79 (d, 2H, J = 8.1 Hz), 7.88 (d, 2H, J = 8.1 Hz), 8.45 (m, 4H). 13C NMR (CDCl3, δ p.p.m): 55.3, 59.9, 114.1, 121.1, 124.2 (q, J = 3.7 Hz), 124.2 (q, J = 272.5 Hz), 125.8 (q, J = 3.6 Hz), 128.9, 129.2, 130.8, 131.1 (q, J = 30.5 Hz), 134.6, 135.4, 139.7, 146.3, 156.6, 157.4, 158.9; MS (EI): m/z 668 (M+, 100). Anal. Calcd for C39H26F6N2O2: C, 70.06; H, 3.92; N, 4.19. Found: C, 70.32; H, 3.81; N, 4.24.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The fluorine atoms of the two trifluoromethyl groups are disordered over two sites (F1–F6 and F7–F12) with occupancies of 0.66 (2):0.34 (2). The values were determined by refining site occupancies.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C1−0.0417 (4)−0.0056 (3)0.68651 (14)0.0225 (8)
C2−0.1083 (4)−0.0379 (3)0.73646 (14)0.0221 (8)
C3−0.2401 (4)−0.0855 (3)0.74784 (15)0.0243 (8)
H3−0.3053−0.10650.72240.029*
C4−0.2729 (5)−0.1013 (3)0.79725 (15)0.0274 (9)
H4−0.3601−0.13650.80610.033*
C5−0.1782 (4)−0.0656 (3)0.83462 (14)0.0241 (8)
C6−0.0207 (4)−0.0069 (3)0.77591 (14)0.0217 (8)
C70.1139 (4)0.0386 (3)0.75513 (14)0.0211 (8)
C80.3389 (4)0.1127 (3)0.75455 (15)0.0227 (8)
C90.3418 (5)0.1070 (3)0.70272 (16)0.0284 (9)
H90.42510.13070.68530.034*
C100.2246 (5)0.0673 (3)0.67642 (15)0.0264 (8)
H100.22560.06280.64120.032*
C110.1057 (4)0.0345 (3)0.70387 (14)0.0219 (8)
C12−0.0196 (5)−0.2558 (3)0.57401 (15)0.0251 (8)
C13−0.0576 (4)−0.2838 (3)0.62200 (15)0.0247 (8)
H13−0.0803−0.35680.62980.030*
C14−0.0625 (4)−0.2046 (3)0.65879 (15)0.0237 (8)
H14−0.0888−0.22470.69160.028*
C15−0.0298 (4)−0.0961 (3)0.64873 (14)0.0229 (8)
C160.0115 (4)−0.0708 (3)0.59949 (15)0.0258 (9)
H160.03450.00190.59120.031*
C170.0190 (5)−0.1496 (3)0.56326 (15)0.0266 (9)
H170.0507−0.13120.53080.032*
C18−0.3207 (4)0.2477 (3)0.62886 (15)0.0265 (9)
C19−0.3525 (4)0.1388 (3)0.62095 (15)0.0262 (9)
H19−0.43720.11900.60340.031*
C20−0.2610 (4)0.0602 (3)0.63860 (15)0.0256 (9)
H20−0.2836−0.01380.63310.031*
C21−0.1352 (4)0.0870 (3)0.66452 (14)0.0215 (8)
C22−0.1038 (5)0.1955 (3)0.67151 (15)0.0264 (9)
H22−0.01840.21530.68870.032*
C23−0.1952 (5)0.2765 (3)0.65377 (16)0.0296 (9)
H23−0.17190.35060.65870.036*
C24−0.0996 (6)−0.4215 (4)0.53919 (18)0.0383 (11)
H24A−0.0856−0.46650.50960.058*
H24B−0.2013−0.40100.54180.058*
H24C−0.0712−0.46240.56880.058*
C25−0.3891 (6)0.4316 (3)0.6160 (2)0.0477 (13)
H25A−0.46910.47390.60220.072*
H25B−0.30070.44810.59760.072*
H25C−0.37600.45010.65100.072*
C26−0.2127 (4)−0.0782 (3)0.88795 (14)0.0250 (8)
C27−0.2372 (5)−0.1807 (4)0.90810 (15)0.0302 (9)
H27−0.2328−0.24280.88740.036*
C28−0.2681 (5)−0.1925 (4)0.95836 (16)0.0336 (10)
C29−0.2793 (5)−0.1024 (4)0.98864 (17)0.0384 (11)
H29−0.3024−0.11041.02280.046*
C30−0.2569 (5)−0.0014 (4)0.96899 (17)0.0395 (11)
H30−0.26460.06060.98970.047*
C31−0.2231 (5)0.0109 (4)0.91903 (16)0.0325 (10)
H31−0.20700.08130.90600.039*
C320.4591 (4)0.1623 (3)0.78298 (14)0.0237 (8)
C330.4380 (4)0.1942 (3)0.83220 (16)0.0270 (9)
H330.34770.18140.84770.032*
C340.5474 (5)0.2441 (3)0.85863 (15)0.0274 (9)
C350.6800 (5)0.2636 (4)0.83707 (17)0.0366 (11)
H350.75410.29900.85520.044*
C360.7027 (5)0.2308 (4)0.78883 (18)0.0446 (13)
H360.79410.24240.77390.053*
C370.5943 (5)0.1811 (4)0.76177 (17)0.0346 (10)
H370.61200.15950.72850.041*
C38−0.2852 (7)−0.3031 (4)0.97895 (19)0.0466 (12)
C390.5217 (5)0.2783 (4)0.91103 (17)0.0375 (10)
N1−0.0507 (4)−0.0179 (3)0.82383 (12)0.0236 (7)
N20.2259 (4)0.0768 (3)0.78144 (12)0.0233 (7)
O1−0.0136 (4)−0.3268 (2)0.53532 (11)0.0343 (7)
O2−0.4209 (3)0.3188 (2)0.61156 (12)0.0369 (8)
F1−0.3382 (15)−0.3725 (10)0.9461 (4)0.071 (3)0.660 (17)
F2−0.3476 (14)−0.3106 (8)1.0210 (3)0.075 (3)0.660 (17)
F3−0.1500 (9)−0.3518 (9)0.9890 (5)0.075 (3)0.660 (17)
F40.4349 (13)0.2060 (11)0.9350 (2)0.090 (4)0.660 (17)
F50.6399 (7)0.2656 (8)0.9387 (4)0.056 (2)0.660 (17)
F60.4708 (16)0.3715 (9)0.9164 (3)0.107 (5)0.660 (17)
F7−0.422 (3)−0.3074 (18)1.0018 (14)0.142 (12)0.340 (17)
F8−0.198 (4)−0.3251 (18)1.0103 (10)0.116 (10)0.340 (17)
F9−0.307 (3)−0.383 (2)0.9498 (6)0.074 (7)0.340 (17)
F100.559 (3)0.3875 (16)0.9153 (8)0.124 (9)0.340 (17)
F110.3896 (12)0.2861 (18)0.9235 (6)0.069 (6)0.340 (17)
F120.588 (4)0.238 (3)0.9431 (10)0.155 (13)0.340 (17)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0176 (19)0.0241 (19)0.0257 (19)−0.0006 (15)−0.0014 (16)0.0025 (15)
C20.0169 (19)0.0242 (19)0.0252 (19)−0.0001 (15)0.0009 (16)0.0004 (14)
C30.020 (2)0.026 (2)0.0266 (19)−0.0040 (15)−0.0008 (16)−0.0027 (15)
C40.023 (2)0.029 (2)0.031 (2)−0.0062 (17)0.0011 (18)−0.0025 (16)
C50.023 (2)0.0240 (19)0.025 (2)−0.0035 (15)0.0013 (17)−0.0006 (14)
C60.0180 (19)0.0228 (19)0.0243 (19)0.0001 (14)0.0018 (16)−0.0020 (14)
C70.0155 (19)0.0203 (18)0.028 (2)−0.0030 (14)−0.0008 (16)−0.0001 (14)
C80.016 (2)0.024 (2)0.028 (2)−0.0032 (15)−0.0003 (16)−0.0022 (15)
C90.018 (2)0.032 (2)0.035 (2)−0.0064 (16)0.0030 (18)0.0009 (17)
C100.024 (2)0.030 (2)0.0254 (19)−0.0004 (16)0.0033 (17)−0.0005 (16)
C110.0164 (19)0.0226 (19)0.027 (2)−0.0007 (14)0.0007 (16)−0.0011 (15)
C120.021 (2)0.028 (2)0.027 (2)0.0017 (16)−0.0005 (17)−0.0002 (15)
C130.023 (2)0.0229 (19)0.028 (2)0.0017 (15)0.0007 (17)−0.0014 (15)
C140.017 (2)0.027 (2)0.028 (2)−0.0008 (15)0.0004 (16)0.0043 (15)
C150.019 (2)0.0254 (19)0.0242 (19)−0.0010 (15)−0.0004 (16)0.0004 (14)
C160.022 (2)0.0231 (19)0.032 (2)−0.0031 (16)0.0001 (17)0.0008 (15)
C170.029 (2)0.028 (2)0.024 (2)−0.0024 (17)−0.0002 (18)0.0028 (15)
C180.022 (2)0.029 (2)0.028 (2)0.0028 (16)−0.0010 (17)0.0028 (16)
C190.018 (2)0.031 (2)0.029 (2)−0.0016 (16)−0.0050 (17)−0.0021 (16)
C200.024 (2)0.027 (2)0.0256 (19)0.0003 (16)0.0009 (17)−0.0011 (15)
C210.019 (2)0.0231 (19)0.0228 (19)0.0021 (15)0.0016 (15)−0.0022 (14)
C220.023 (2)0.026 (2)0.030 (2)−0.0011 (16)−0.0051 (17)0.0005 (16)
C230.025 (2)0.026 (2)0.038 (2)−0.0023 (16)0.0002 (19)0.0042 (17)
C240.044 (3)0.031 (2)0.040 (2)−0.007 (2)0.000 (2)−0.0066 (19)
C250.038 (3)0.029 (2)0.076 (4)0.004 (2)−0.011 (3)0.013 (2)
C260.0163 (19)0.034 (2)0.025 (2)−0.0038 (16)0.0030 (16)−0.0009 (16)
C270.029 (2)0.034 (2)0.028 (2)−0.0080 (17)−0.0002 (18)0.0006 (16)
C280.031 (2)0.039 (2)0.031 (2)−0.0077 (19)0.000 (2)0.0056 (18)
C290.038 (3)0.048 (3)0.029 (2)−0.007 (2)0.006 (2)−0.0015 (19)
C300.041 (3)0.041 (3)0.036 (2)−0.005 (2)0.007 (2)−0.007 (2)
C310.033 (2)0.033 (2)0.032 (2)−0.0027 (19)0.0080 (19)−0.0064 (18)
C320.018 (2)0.026 (2)0.027 (2)−0.0035 (15)−0.0008 (16)−0.0011 (15)
C330.016 (2)0.030 (2)0.034 (2)−0.0025 (15)−0.0013 (17)−0.0039 (16)
C340.021 (2)0.033 (2)0.027 (2)−0.0036 (17)−0.0029 (17)−0.0030 (16)
C350.023 (2)0.052 (3)0.035 (2)−0.013 (2)−0.0026 (19)−0.004 (2)
C360.024 (2)0.073 (4)0.036 (3)−0.020 (2)0.002 (2)−0.010 (2)
C370.023 (2)0.051 (3)0.029 (2)−0.0058 (19)0.0029 (18)−0.0136 (19)
C380.060 (3)0.046 (3)0.033 (2)−0.008 (3)−0.003 (2)0.013 (2)
C390.026 (2)0.055 (3)0.031 (2)−0.004 (2)−0.0031 (19)−0.010 (2)
N10.0190 (17)0.0266 (17)0.0253 (17)−0.0033 (13)0.0040 (14)−0.0002 (13)
N20.0191 (17)0.0255 (17)0.0251 (16)−0.0004 (13)0.0001 (14)−0.0011 (12)
O10.043 (2)0.0291 (16)0.0307 (15)−0.0046 (13)0.0021 (14)−0.0048 (12)
O20.0261 (17)0.0336 (17)0.051 (2)0.0062 (13)−0.0094 (15)0.0072 (14)
F10.103 (6)0.037 (4)0.072 (5)−0.032 (4)−0.048 (4)0.020 (3)
F20.122 (8)0.061 (4)0.041 (3)−0.009 (6)0.028 (4)0.014 (3)
F30.065 (4)0.054 (5)0.107 (8)0.009 (3)−0.020 (4)0.021 (5)
F40.100 (7)0.139 (8)0.031 (3)−0.077 (7)0.024 (4)−0.021 (4)
F50.025 (3)0.114 (5)0.030 (3)0.006 (3)−0.007 (2)−0.026 (3)
F60.190 (13)0.088 (6)0.042 (4)0.105 (7)−0.025 (6)−0.020 (4)
F70.137 (16)0.061 (9)0.23 (3)0.015 (13)0.144 (18)0.045 (15)
F80.18 (2)0.060 (12)0.108 (19)−0.014 (15)−0.081 (18)0.035 (11)
F90.16 (2)0.050 (8)0.016 (5)0.015 (9)0.021 (8)0.016 (4)
F100.17 (2)0.097 (10)0.102 (12)−0.089 (13)0.058 (12)−0.076 (9)
F110.031 (5)0.114 (15)0.061 (8)−0.013 (6)0.023 (5)−0.051 (9)
F120.18 (2)0.22 (2)0.057 (10)0.17 (2)−0.014 (16)−0.015 (15)

Geometric parameters (Å, °)

C1—C151.516 (5)C24—O11.421 (5)
C1—C111.529 (5)C24—H24A0.9800
C1—C21.534 (5)C24—H24B0.9800
C1—C211.553 (5)C24—H24C0.9800
C2—C31.391 (5)C25—O21.430 (6)
C2—C61.392 (6)C25—H25A0.9800
C3—C41.379 (6)C25—H25B0.9800
C3—H30.9500C25—H25C0.9800
C4—C51.407 (6)C26—C311.387 (6)
C4—H40.9500C26—C271.396 (6)
C5—N11.354 (5)C27—C281.392 (6)
C5—C261.480 (5)C27—H270.9500
C6—N11.328 (5)C28—C291.385 (6)
C6—C71.480 (5)C28—C381.483 (7)
C7—N21.344 (5)C29—C301.371 (7)
C7—C111.384 (5)C29—H290.9500
C8—N21.350 (5)C30—C311.390 (7)
C8—C91.398 (6)C30—H300.9500
C8—C321.486 (5)C31—H310.9500
C9—C101.388 (6)C32—C371.398 (6)
C9—H90.9500C32—C331.397 (6)
C10—C111.389 (6)C33—C341.385 (6)
C10—H100.9500C33—H330.9500
C12—O11.364 (5)C34—C351.383 (6)
C12—C131.384 (6)C34—C391.493 (6)
C12—C171.391 (5)C35—C361.378 (7)
C13—C141.393 (6)C35—H350.9500
C13—H130.9500C36—C371.387 (6)
C14—C151.401 (5)C36—H360.9500
C14—H140.9500C37—H370.9500
C15—C161.416 (6)C38—F81.20 (2)
C16—C171.380 (5)C38—F91.28 (2)
C16—H160.9500C38—F21.275 (10)
C17—H170.9500C38—F11.328 (11)
C18—O21.362 (5)C38—F31.418 (10)
C18—C231.391 (6)C38—F71.417 (19)
C18—C191.393 (6)C39—F121.17 (2)
C19—C201.376 (6)C39—F111.275 (11)
C19—H190.9500C39—F61.253 (8)
C20—C211.401 (6)C39—F51.336 (9)
C20—H200.9500C39—F101.399 (16)
C21—C221.385 (5)C39—F41.366 (8)
C22—C231.396 (6)F5—O1i2.953 (11)
C22—H220.9500F8—O2ii2.94 (3)
C23—H230.9500F12—O1i2.80 (3)
C15—C1—C11112.3 (3)C18—C23—H23120.3
C15—C1—C2115.2 (3)C22—C23—H23120.3
C11—C1—C2100.2 (3)O1—C24—H24A109.5
C15—C1—C21109.2 (3)O1—C24—H24B109.5
C11—C1—C21112.2 (3)H24A—C24—H24B109.5
C2—C1—C21107.5 (3)O1—C24—H24C109.5
C3—C2—C6117.5 (4)H24A—C24—H24C109.5
C3—C2—C1131.1 (4)H24B—C24—H24C109.5
C6—C2—C1111.3 (3)O2—C25—H25A109.5
C4—C3—C2117.8 (4)O2—C25—H25B109.5
C4—C3—H3121.1H25A—C25—H25B109.5
C2—C3—H3121.1O2—C25—H25C109.5
C3—C4—C5120.6 (4)H25A—C25—H25C109.5
C3—C4—H4119.7H25B—C25—H25C109.5
C5—C4—H4119.7C31—C26—C27118.3 (4)
N1—C5—C4121.9 (4)C31—C26—C5121.1 (4)
N1—C5—C26116.3 (3)C27—C26—C5120.6 (4)
C4—C5—C26121.7 (4)C28—C27—C26120.5 (4)
N1—C6—C2126.3 (4)C28—C27—H27119.8
N1—C6—C7125.7 (3)C26—C27—H27119.8
C2—C6—C7108.0 (3)C29—C28—C27120.3 (4)
N2—C7—C11125.6 (4)C29—C28—C38120.9 (4)
N2—C7—C6125.9 (3)C27—C28—C38118.8 (4)
C11—C7—C6108.5 (3)C30—C29—C28119.6 (4)
N2—C8—C9122.3 (4)C30—C29—H29120.2
N2—C8—C32116.3 (3)C28—C29—H29120.2
C9—C8—C32121.4 (4)C29—C30—C31120.5 (4)
C10—C9—C8120.8 (4)C29—C30—H30119.8
C10—C9—H9119.6C31—C30—H30119.8
C8—C9—H9119.6C26—C31—C30120.9 (4)
C11—C10—C9117.0 (4)C26—C31—H31119.6
C11—C10—H10121.5C30—C31—H31119.6
C9—C10—H10121.5C37—C32—C33117.8 (4)
C7—C11—C10118.5 (4)C37—C32—C8122.1 (4)
C7—C11—C1111.5 (3)C33—C32—C8120.0 (4)
C10—C11—C1130.0 (4)C34—C33—C32120.7 (4)
O1—C12—C13124.3 (4)C34—C33—H33119.6
O1—C12—C17115.9 (4)C32—C33—H33119.6
C13—C12—C17119.7 (4)C35—C34—C33121.0 (4)
C12—C13—C14119.8 (4)C35—C34—C39119.4 (4)
C12—C13—H13120.1C33—C34—C39119.7 (4)
C14—C13—H13120.1C36—C35—C34118.8 (4)
C13—C14—C15121.8 (4)C36—C35—H35120.6
C13—C14—H14119.1C34—C35—H35120.6
C15—C14—H14119.1C35—C36—C37121.0 (4)
C14—C15—C16116.8 (4)C35—C36—H36119.5
C14—C15—C1124.1 (3)C37—C36—H36119.5
C16—C15—C1119.1 (3)C36—C37—C32120.7 (4)
C17—C16—C15121.3 (4)C36—C37—H37119.7
C17—C16—H16119.3C32—C37—H37119.7
C15—C16—H16119.3F2—C38—F1112.1 (8)
C16—C17—C12120.3 (4)F2—C38—F3101.7 (7)
C16—C17—H17119.8F1—C38—F3100.5 (8)
C12—C17—H17119.8F9—C38—C28119.8 (10)
O2—C18—C23124.9 (4)F2—C38—C28116.6 (7)
O2—C18—C19115.2 (4)F1—C38—C28112.6 (6)
C23—C18—C19119.9 (4)F3—C38—C28111.6 (7)
C20—C19—C18119.9 (4)C28—C38—F7107.0 (10)
C20—C19—H19120.1F6—C39—F5110.7 (7)
C18—C19—H19120.1F6—C39—F4109.0 (8)
C19—C20—C21121.3 (4)F5—C39—F498.3 (7)
C19—C20—H20119.3F11—C39—C34115.1 (7)
C21—C20—H20119.3F6—C39—C34115.4 (5)
C22—C21—C20118.2 (4)F5—C39—C34111.3 (6)
C22—C21—C1122.9 (4)F10—C39—C34108.1 (9)
C20—C21—C1118.8 (3)F4—C39—C34110.9 (5)
C21—C22—C23121.3 (4)C6—N1—C5115.9 (3)
C21—C22—H22119.4C7—N2—C8115.7 (3)
C23—C22—H22119.4C12—O1—C24116.8 (3)
C18—C23—C22119.4 (4)C18—O2—C25117.4 (4)
C15—C1—C2—C3−56.1 (6)C11—C1—C21—C20168.0 (3)
C11—C1—C2—C3−176.8 (4)C2—C1—C21—C20−82.8 (4)
C21—C1—C2—C365.9 (5)C20—C21—C22—C230.6 (6)
C15—C1—C2—C6127.9 (4)C1—C21—C22—C23−176.0 (4)
C11—C1—C2—C67.2 (4)O2—C18—C23—C22177.3 (4)
C21—C1—C2—C6−110.1 (4)C19—C18—C23—C22−1.3 (6)
C6—C2—C3—C4−1.7 (6)C21—C22—C23—C180.4 (6)
C1—C2—C3—C4−177.5 (4)N1—C5—C26—C3159.9 (5)
C2—C3—C4—C52.8 (6)C4—C5—C26—C31−120.1 (5)
C3—C4—C5—N1−2.0 (6)N1—C5—C26—C27−120.8 (4)
C3—C4—C5—C26178.0 (4)C4—C5—C26—C2759.2 (6)
C3—C2—C6—N1−0.3 (6)C31—C26—C27—C28−1.4 (6)
C1—C2—C6—N1176.3 (4)C5—C26—C27—C28179.3 (4)
C3—C2—C6—C7178.5 (3)C26—C27—C28—C292.0 (7)
C1—C2—C6—C7−4.9 (4)C26—C27—C28—C38−176.5 (5)
N1—C6—C7—N2−0.7 (6)C27—C28—C29—C30−1.3 (7)
C2—C6—C7—N2−179.5 (4)C38—C28—C29—C30177.2 (5)
N1—C6—C7—C11178.8 (4)C28—C29—C30—C310.0 (8)
C2—C6—C7—C110.0 (4)C27—C26—C31—C300.1 (6)
N2—C8—C9—C102.4 (6)C5—C26—C31—C30179.4 (4)
C32—C8—C9—C10−175.5 (4)C29—C30—C31—C260.6 (7)
C8—C9—C10—C110.3 (6)N2—C8—C32—C37165.7 (4)
N2—C7—C11—C103.3 (6)C9—C8—C32—C37−16.2 (6)
C6—C7—C11—C10−176.2 (3)N2—C8—C32—C33−15.8 (6)
N2—C7—C11—C1−175.6 (3)C9—C8—C32—C33162.3 (4)
C6—C7—C11—C14.9 (4)C37—C32—C33—C341.0 (6)
C9—C10—C11—C7−3.0 (6)C8—C32—C33—C34−177.6 (4)
C9—C10—C11—C1175.7 (4)C32—C33—C34—C35−0.1 (7)
C15—C1—C11—C7−130.0 (3)C32—C33—C34—C39179.4 (4)
C2—C1—C11—C7−7.3 (4)C33—C34—C35—C36−1.0 (7)
C21—C1—C11—C7106.6 (4)C39—C34—C35—C36179.4 (5)
C15—C1—C11—C1051.2 (5)C34—C35—C36—C371.3 (8)
C2—C1—C11—C10174.0 (4)C35—C36—C37—C32−0.4 (8)
C21—C1—C11—C10−72.1 (5)C33—C32—C37—C36−0.7 (7)
O1—C12—C13—C14−179.1 (4)C8—C32—C37—C36177.8 (4)
C17—C12—C13—C142.6 (6)C29—C28—C38—F218.5 (10)
C12—C13—C14—C150.0 (6)C27—C28—C38—F2−163.0 (8)
C13—C14—C15—C16−1.2 (6)C29—C28—C38—F1150.2 (9)
C13—C14—C15—C1176.3 (4)C27—C28—C38—F1−31.3 (10)
C11—C1—C15—C14107.7 (4)C29—C28—C38—F3−97.7 (8)
C2—C1—C15—C14−6.1 (6)C27—C28—C38—F380.8 (8)
C21—C1—C15—C14−127.2 (4)C35—C34—C39—F691.0 (10)
C11—C1—C15—C16−74.9 (5)C33—C34—C39—F6−88.6 (10)
C2—C1—C15—C16171.3 (4)C35—C34—C39—F5−36.2 (7)
C21—C1—C15—C1650.2 (5)C33—C34—C39—F5144.2 (6)
C14—C15—C16—C170.0 (6)C35—C34—C39—F4−144.6 (8)
C1—C15—C16—C17−177.7 (4)C33—C34—C39—F435.9 (10)
C15—C16—C17—C122.6 (7)C2—C6—N1—C51.1 (6)
O1—C12—C17—C16177.7 (4)C7—C6—N1—C5−177.5 (3)
C13—C12—C17—C16−3.8 (7)C4—C5—N1—C60.0 (5)
O2—C18—C19—C20−177.6 (4)C26—C5—N1—C6−180.0 (3)
C23—C18—C19—C201.2 (6)C11—C7—N2—C8−0.7 (6)
C18—C19—C20—C21−0.1 (6)C6—C7—N2—C8178.8 (3)
C19—C20—C21—C22−0.8 (6)C9—C8—N2—C7−2.2 (6)
C19—C20—C21—C1176.0 (4)C32—C8—N2—C7175.8 (3)
C15—C1—C21—C22−140.5 (4)C13—C12—O1—C2424.3 (6)
C11—C1—C21—C22−15.4 (5)C17—C12—O1—C24−157.3 (4)
C2—C1—C21—C2293.8 (4)C23—C18—O2—C255.1 (6)
C15—C1—C21—C2042.9 (5)C19—C18—O2—C25−176.2 (4)

Symmetry codes: (i) −x+1/2, −y, z+1/2; (ii) −x−1/2, −y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2809).

References

  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Ono, K., Nagano, K., Suto, M. & Saito, K. (2007). Heterocycles, 71, 799–804.
  • Ono, K. & Saito, K. (2008). Heterocycles, 75, 2381–2413.
  • Rigaku/MSC (2001). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography