PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): m1358.
Published online 2008 October 4. doi:  10.1107/S1600536808031619
PMCID: PMC2959744

catena-Poly[[[bis­[aqua­nickel(II)]bis­(μ-pyridine-2,6-dicarboxyl­ato N-oxide)]-μ-1,2-di-4-pyridylethane] tetra­hydrate]

Abstract

In the title compound, {[Ni2(C7H3NO5)2(C12H12N2)(H2O)2]·4H2O}n, two NiII ions, two tridentate pyridine-2,6-dicarboxyl­ate N-oxide ligands and two coordinated water mol­ecules form centrosymmetric dinuclear units, which are further bridged by centrosymmetric 1,2-di-4-pyridylethane ligands into polymeric chains along [210]. Each NiII ion has a distorted square-pyramidal environment, with the basal plane formed by three O [Ni—O = 1.9290 (16)–1.9588 (10) Å] and one N [Ni—N = 1.9828 (18) Å] atoms and the apical position occupied by the water mol­ecule [Ni—O = 2.2643 (11) Å]. The water mol­ecules are involved in the formation of O—H(...)O hydrogen bonds.

Related literature

For related literature, see: Laine et al. (1995a [triangle],b [triangle]); Lin et al. (2006 [triangle]); Nathan et al. (1985 [triangle]). For a related structure, see: Wen et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1358-scheme1.jpg

Experimental

Crystal data

  • [Ni2(C7H3NO5)2(C12H12N2)(H2O)2]·4H2O
  • M r = 771.96
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1358-efi1.jpg
  • a = 8.2803 (16) Å
  • b = 10.3542 (15) Å
  • c = 11.1326 (16) Å
  • α = 113.727 (2)°
  • β = 104.282 (2)°
  • γ = 100.255 (2)°
  • V = 804.4 (2) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.25 mm−1
  • T = 298 (2) K
  • 0.25 × 0.19 × 0.16 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.745, T max = 0.825
  • 4146 measured reflections
  • 2850 independent reflections
  • 2180 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.063
  • S = 0.83
  • 2850 reflections
  • 199 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808031619/cv2458sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031619/cv2458Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author is grateful to the Natural Science Foundation of Zhejiang Province for financial support (grant No. Y407081).

supplementary crystallographic information

Comment

The complexation of metal ions by dicarboxylate acid (pyridine-2,6-dicarboxylic acid) has been extensively studied (Laine et al., 1995a,b). Owing to the unique ability of the ligand to form stable chelates with various coordination modes and its biological activity, many crystal structures have been determined. Pyridine-2,6-dicarboxylic acid N-oxide (pydco), has limited steric hindrance and weak stacking interactions and can offer possibilities to form complicated coordination polymers through polycarboxylate ligands. However, the coordination chemistry and structural properties of metal polymers containing pydco ligands have seldom been documented to date (Nathan et al., 1985; Lin et al., 2006; Wen et al., 2005). In this paper, we report the synthesis and crystal structure of the title compound, (I).

In (I) (Fig. 1), each NiII atom is coordinated by three oxygen atoms from the carboxylato groups and one N-oxide entity from two pydco anions and one N atom from bridging 1,2-di-4-pyridylethane (bpa) ligand to form the basal plane, and further it coordinated by one apical oxygen atom from one water molecule to form a quasi-square pyramidal environment. Each carboxylato group is coordinated to the Ni atom in a monodentate fashion and the two carboxyl groups are out of coplanarity with the correspondingly linking pyridine rings, with the dihedral angles between them being ca 46° and 39°, respectively. They are very different from those in the free H2pydco, in which the carboxyl groups are found to be essentially coplanar with the pyridine rings. Owing to the monodentate coordination modes of carboxylate groups, a binuclear [Ni2(pydco)2] unit was formed. Finally, bpa ligands connect the dimeric units into polymeric zigzag chain.

The crystalline water molecules contribute to intermolecular O—H···O hydrogen bonds (Table 1), which stabilize the crystal packing.

Experimental

Ni(AC)2 (25 mg, 0.07 mmol), H2pydco (31 mg, 0.15 mmol), bpa (19 mg, 0.09 mmol) were added in a solvent of acetonitrile, the mixture was heated for two hours under reflux. during the process stirring and influx were required. The resultant was kept at room temperature for six weeks, when single crystals were obtained.

Refinement

C-bound H atoms were geometrically positioned (C—H 0.93-0.97 Å). The O-bound H atoms were located on a Fourier difference map with O—H 0.84-0.86 °. All H atoms were refined as riding, with Uiso(H) = 1.2-1.5Ueq of the parent atom.

Figures

Fig. 1.
A portion of the crystal structure of (I) showing the atomic numbering scheme and 40% probability displacement ellipsoids [symmetry codes: (i) -x, -y, 2 - z; (ii) -x, -y, 1 - z' (iii) -x, 1 - y, 1 - z].

Crystal data

[Ni2(C7H3NO5)2(C12H12N2)(H2O)2]·4H2OZ = 1
Mr = 771.96F(000) = 398
Triclinic, P1Dx = 1.594 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2803 (16) ÅCell parameters from 2850 reflections
b = 10.3542 (15) Åθ = 2.1–25.2°
c = 11.1326 (16) ŵ = 1.25 mm1
α = 113.727 (2)°T = 298 K
β = 104.282 (2)°Block, green
γ = 100.255 (2)°0.25 × 0.19 × 0.16 mm
V = 804.4 (2) Å3

Data collection

Bruker APEXII area-detector diffractometer2850 independent reflections
Radiation source: fine-focus sealed tube2180 reflections with I > 2σ(I)
graphiteRint = 0.033
[var phi] and ω scansθmax = 25.2°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.745, Tmax = 0.825k = −12→12
4146 measured reflectionsl = −13→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 0.83w = 1/[σ2(Fo2) + (0.0269P)2 + 0.19P] where P = (Fo2 + 2Fc2)/3
2850 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.19610 (4)0.10188 (3)0.85792 (3)0.03124 (11)
O10.0912 (2)0.1451 (2)0.70832 (19)0.0473 (5)
O2−0.1257 (2)0.1548 (2)0.5550 (2)0.0600 (6)
O3−0.03449 (19)0.0177 (2)0.85274 (17)0.0433 (4)
N10.4335 (2)0.2138 (2)0.8837 (2)0.0376 (5)
N2−0.1753 (2)−0.0555 (2)0.7358 (2)0.0354 (5)
C1−0.0673 (3)0.1028 (3)0.6318 (3)0.0401 (6)
C2−0.2011 (3)−0.0227 (3)0.6272 (3)0.0368 (6)
C3−0.3544 (3)−0.1043 (3)0.5128 (3)0.0489 (7)
H3−0.3736−0.08470.43690.059*
C4−0.4795 (4)−0.2144 (3)0.5092 (3)0.0570 (8)
H4−0.5824−0.26860.43150.068*
C5−0.4508 (3)−0.2433 (3)0.6215 (3)0.0492 (7)
H5−0.5343−0.31720.62050.059*
C6−0.2980 (3)−0.1624 (3)0.7350 (3)0.0366 (6)
C80.5711 (3)0.1727 (3)0.9306 (3)0.0490 (7)
H80.55140.09530.95290.059*
C90.7394 (3)0.2397 (3)0.9470 (3)0.0507 (7)
H90.83070.20770.97980.061*
C100.7726 (3)0.3553 (3)0.9144 (3)0.0436 (6)
C110.9551 (3)0.4316 (3)0.9304 (3)0.0518 (7)
H11A1.02340.36350.92150.062*
H11B0.94880.45870.85590.062*
C120.6307 (3)0.3995 (3)0.8690 (3)0.0479 (7)
H120.64740.47820.84820.058*
C130.46548 (10)0.32671 (9)0.85477 (8)0.0442 (7)
H130.37220.35770.82360.053*
O1W0.22201 (10)−0.11885 (9)0.72089 (8)0.0584 (5)
H1W0.1610−0.19390.72120.088*
H2W0.2045−0.13670.63570.088*
O2W0.15515 (10)0.41900 (9)0.61420 (8)0.0944 (8)
H3W0.08280.33640.58870.142*
H4W0.11220.4890.63540.142*
O3W0.03080 (10)0.37588 (9)0.33371 (8)0.0875 (7)
H6W0.08200.35920.27410.131*
H5W0.11160.45100.40440.131*
C7−0.25478 (10)−0.18425 (9)0.86469 (8)0.0374 (6)
O4−0.28538 (10)−0.09359 (9)0.96606 (8)0.0401 (4)
O5−0.19822 (10)−0.28825 (9)0.85957 (8)0.0540 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.02697 (17)0.0386 (2)0.03728 (19)0.00914 (13)0.01384 (14)0.02526 (16)
O10.0408 (10)0.0605 (12)0.0545 (12)0.0133 (9)0.0172 (9)0.0406 (11)
O20.0654 (13)0.0709 (14)0.0579 (13)0.0196 (11)0.0122 (10)0.0495 (12)
O30.0302 (9)0.0632 (12)0.0351 (10)0.0041 (8)0.0070 (8)0.0286 (9)
N10.0335 (11)0.0434 (13)0.0472 (13)0.0122 (10)0.0175 (10)0.0297 (11)
N20.0296 (11)0.0454 (13)0.0341 (12)0.0114 (10)0.0107 (10)0.0218 (11)
C10.0484 (16)0.0430 (16)0.0361 (15)0.0176 (13)0.0183 (13)0.0219 (13)
C20.0388 (14)0.0456 (16)0.0335 (14)0.0180 (12)0.0152 (12)0.0221 (13)
C30.0471 (16)0.0630 (19)0.0386 (16)0.0170 (15)0.0102 (14)0.0285 (15)
C40.0403 (16)0.073 (2)0.0413 (17)0.0064 (15)0.0009 (14)0.0243 (16)
C50.0403 (15)0.0570 (19)0.0440 (17)0.0067 (13)0.0102 (13)0.0241 (15)
C60.0319 (13)0.0431 (16)0.0374 (15)0.0096 (12)0.0129 (12)0.0219 (13)
C80.0419 (15)0.0528 (18)0.070 (2)0.0182 (13)0.0246 (15)0.0413 (16)
C90.0376 (15)0.0531 (18)0.070 (2)0.0172 (13)0.0220 (14)0.0340 (16)
C100.0384 (14)0.0430 (16)0.0456 (16)0.0072 (12)0.0191 (13)0.0172 (14)
C110.0420 (16)0.0497 (18)0.0549 (18)0.0048 (13)0.0224 (14)0.0172 (14)
C120.0497 (16)0.0403 (16)0.0560 (18)0.0061 (13)0.0202 (14)0.0270 (15)
C130.0400 (15)0.0445 (16)0.0553 (17)0.0127 (13)0.0167 (13)0.0305 (15)
O1W0.0732 (13)0.0580 (13)0.0531 (12)0.0221 (11)0.0286 (11)0.0301 (11)
O2W0.1038 (19)0.0682 (16)0.113 (2)0.0268 (14)0.0349 (16)0.0454 (15)
O3W0.127 (2)0.0742 (16)0.0925 (17)0.0440 (15)0.0679 (16)0.0463 (14)
C70.0256 (13)0.0449 (17)0.0418 (16)0.0028 (12)0.0102 (12)0.0249 (14)
O40.0350 (9)0.0520 (11)0.0420 (10)0.0147 (8)0.0165 (8)0.0278 (9)
O50.0675 (13)0.0502 (12)0.0608 (13)0.0252 (10)0.0269 (11)0.0360 (11)

Geometric parameters (Å, °)

Ni1—O31.9290 (16)C8—C91.373 (3)
Ni1—O11.9373 (16)C8—H80.9300
Ni1—O4i1.9588 (10)C9—C101.386 (3)
Ni1—N11.9828 (18)C9—H90.9300
Ni1—O1W2.2643 (11)C10—C121.390 (3)
O1—C11.258 (3)C10—C111.506 (3)
O2—C11.230 (3)C11—C11ii1.501 (5)
O3—N21.331 (2)C11—H11A0.9700
N1—C131.3332 (19)C11—H11B0.9700
N1—C81.345 (3)C12—C131.376 (3)
N2—C61.358 (3)C12—H120.9300
N2—C21.361 (3)C13—H130.9300
C1—C21.525 (3)O1W—H1W0.85
C2—C31.379 (3)O1W—H2W0.86
C3—C41.377 (4)O2W—H3W0.84
C3—H30.9300O2W—H4W0.84
C4—C51.375 (3)O3W—H6W0.85
C4—H40.9300O3W—H5W0.86
C5—C61.371 (3)C7—O51.2351 (14)
C5—H50.9300C7—O41.2618 (12)
C6—C71.517 (3)O4—Ni1i1.9588 (10)
O3—Ni1—O189.83 (7)N2—C6—C5120.3 (2)
O3—Ni1—O4i86.14 (5)N2—C6—C7116.2 (2)
O1—Ni1—O4i167.38 (6)C5—C6—C7123.6 (3)
O3—Ni1—N1172.23 (8)N1—C8—C9123.1 (2)
O1—Ni1—N190.76 (7)N1—C8—H8118.5
O4i—Ni1—N191.65 (6)C9—C8—H8118.5
O3—Ni1—O1W94.95 (6)C8—C9—C10119.7 (2)
O1—Ni1—O1W97.00 (6)C8—C9—H9120.2
O4i—Ni1—O1W95.30 (6)C10—C9—H9120.2
N1—Ni1—O1W92.67 (6)C9—C10—C12117.0 (2)
C1—O1—Ni1129.11 (16)C9—C10—C11121.5 (2)
N2—O3—Ni1123.58 (13)C12—C10—C11121.5 (2)
C13—N1—C8117.39 (17)C11ii—C11—C10111.5 (3)
C13—N1—Ni1123.82 (12)C11ii—C11—H11A109.3
C8—N1—Ni1118.78 (15)C10—C11—H11A109.3
O3—N2—C6114.80 (18)C11ii—C11—H11B109.3
O3—N2—C2123.49 (19)C10—C11—H11B109.3
C6—N2—C2121.6 (2)H11A—C11—H11B108.0
O2—C1—O1124.3 (2)C13—C12—C10120.0 (2)
O2—C1—C2115.3 (2)C13—C12—H12120.0
O1—C1—C2120.5 (2)C10—C12—H12120.0
N2—C2—C3118.2 (2)N1—C13—C12122.78 (15)
N2—C2—C1121.5 (2)N1—C13—H13118.6
C3—C2—C1120.3 (2)C12—C13—H13118.6
C4—C3—C2121.1 (2)Ni1—O1W—H1W115.3
C4—C3—H3119.5Ni1—O1W—H2W114.2
C2—C3—H3119.5H1W—O1W—H2W108.3
C5—C4—C3119.4 (3)H3W—O2W—H4W113.1
C5—C4—H4120.3H6W—O3W—H5W99.6
C3—C4—H4120.3O5—C7—O4127.3 (1)
C6—C5—C4119.5 (2)O5—C7—C6117.9 (2)
C6—C5—H5120.3O4—C7—C6114.9 (2)
C4—C5—H5120.3C7—O4—Ni1i114.7 (1)

Symmetry codes: (i) −x, −y, −z+2; (ii) −x+2, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W···O3Wiii0.851.992.8144 (15)162
O1W—H2W···O2iii0.861.982.824 (2)168
O3W—H6W···O5iii0.851.942.7791 (13)170
O3W—H5W···O2W0.862.442.8527 (13)110
O2W—H3W···O20.842.152.976 (2)167
O2W—H4W···O3Wiv0.841.972.7985 (14)169

Symmetry codes: (iii) −x, −y, −z+1; (iv) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2458).

References

  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Laine, P., Gourdon, A. & Launay, J.-P. (1995a). Inorg. Chem.34, 5129–5137.
  • Laine, P., Gourdon, A. & Launay, J.-P. (1995b). Inorg. Chem.34, 5138–5149.
  • Lin, J.-G., Zhu, H.-Z., Wen, L.-L., Tian, Z.-F. & Meng, Q.-J. Z. (2006). Z. Anorg. Allg. Chem.632, 689–694.
  • Nathan, L. C., Doyle, C. A., Mooring, A. M., Zapien, D. C., Larsen, S. K. & Pierpont, C. G. (1985). Inorg. Chem.24, 2763–2766.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Wen, L.-L., Dang, D.-B., Duan, C.-Y., Li, Y.-Z., Tian, Z.-F. & Meng, Q.-J. (2005). Inorg. Chem.44, 7161–7170. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography