PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2228–o2229.
Published online 2008 October 31. doi:  10.1107/S1600536808033631
PMCID: PMC2959742

5-Bromo-5-bromo­methyl-2-phen­oxy-1,3,2-dioxaphospho­rinan-2-one

Abstract

In the title 1,3,2-dioxaphospho­rinane derivative, C10H11Br2O4P, the 1,3,2-dioxaphospho­rinane ring adopts a chair conformation, having the P=O bond equatorially oriented and the phen­oxy group axially oriented. The bromo substituent is in an axial position opposite to the phen­oxy group and the bromo­methyl group is in an equatorial position opposite to the P=O bond. In the crystal packing, mol­ecules are linked through weak C—H(...)O and C—H(...)Br inter­actions to form chains along the b axis. The chains are arranged into sheets parallel to the ab plane. In adjacent sheets, mol­ecules are arranged in an anti­parallel fashion. Inter­molecular C—H(...)π inter­actions are also observed.

Related literature

For values of bond lengths and angles, see: Allen et al. (1987 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For ring conformations, see: Cremer & Pople (1975 [triangle]). For related structures, see, for example: Jones et al. (1984 [triangle]); Polozov et al. (1995 [triangle]). For related literature and applications of dioxaphospho­rinane derivatives, see, for example: Goswami (1993 [triangle]); Goswami & Adak (2002 [triangle]); Pilato et al. (1991 [triangle]); Taylor & Goswami (1992 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2228-scheme1.jpg

Experimental

Crystal data

  • C10H11Br2O4P
  • M r = 385.96
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2228-efi1.jpg
  • a = 12.1315 (3) Å
  • b = 6.3095 (1) Å
  • c = 16.8901 (3) Å
  • β = 92.196 (2)°
  • V = 1291.88 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 6.40 mm−1
  • T = 296 (2) K
  • 0.45 × 0.10 × 0.05 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.156, T max = 0.726
  • 16007 measured reflections
  • 3756 independent reflections
  • 1952 reflections with I > 2σ(I)
  • R int = 0.072

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.142
  • S = 0.99
  • 3756 reflections
  • 154 parameters
  • H-atom parameters constrained
  • Δρmax = 0.67 e Å−3
  • Δρmin = −0.91 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808033631/is2349sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808033631/is2349Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

AKA, ACM and SG acknowledge the DST (grant No. SR/S1/OC-13/2005), Government of India, for financial support. ACM thanks the UGC, Government of India, for a fellowship. The authors also thank the Universiti Sains Malaysia for Research University Golden Goose Grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Six-membered cyclic phosphates are important constituents present in a number of biologically important molecules e.g. cyclic adenosine monophosphate (cAMP) and the Compound Z, a precursor of the molybdenum cofactor (Moco) (Goswami, 1993). They especially play key roles in many biosynthetic pathways and comprise structural sub-units of many physiologically important materials. In our synthetic studies (Pilato et al., 1991; Taylor & Goswami, 1992) on the molybdenum cofactor, we are interested to have an efficient synthesis of cyclic dihydroxyacetone phosphate (CDHAP) (Goswami & Adak, 2002). Reaction of phosphate triesters with N-bromosuccinimide (NBS) results in the formation of a dibromo derivative (Fig. 1).

In the title 1,3,2-dioxaphosphorinane derivative (Fig. 1), C10H11Br2O4P, the 1,3,2-dioxaphosphorinane ring adopts a slightly flattened chair conformation with the puckering parameter (Cremer & Pople, 1975) Q = 0.496 (4) Å, θ = 7.4 (5)° and [var phi] = 177 (4)°, having the P═O bond equatorially attached and the phenoxy substituent axially attached with the torsion angle O1—P1—O4—O5 = 82.6 (4)°. The orientation of the phenoxy group is not co-planar to the 1,3,2-dioxaphosphorinane ring as can be indicated by the torsion angle P1—O4—C5—C6 of -108.2 (4)°. The bromo substituent is in the opposite axial position to the phenoxy substituent and the methylbromo group is in an opposite equatorial position to the P═O bond. The bond lengths and angles in (I) are within normal ranges (Allen et al., 1987) and are comparable to related structures (Jones et al., 1984; Polozov et al., 1995). The closest Br···Br distance is 3.5484 (9) Å.

In the crystal packing shown in Fig. 2, the molecules are linked through weak C—H···O interactions (Table 1) to form chains along the b axis which generate S(6) ring motifs (Bernstein et al., 1995). The chains are arranged into sheets parallel to the ab plane. In the adjacent sheets, the molecules are arranged in an anti-parallel fashion (Fig. 3). The adjacent sheets are connected through weak C—H···O interactions (Table 1) and Br···Br short contacts with the Br···Br distance of 3.8771 (9) Å (symmetry code: 1 - x, 1/2 + y, 1/2 - z). The crystal is stabilized by weak C—H···O, C—H···Br interactions and C—H···π interactions (Table 1); Cg1 is the centroid of the C5–C10 ring.

Experimental

A solution of 5-methylene-2-oxo-2-phenoxy-[1,3,2]-dioxaphosphorinane (0.4 g, 1.76 mmol), doubly crystallized N-bromosuccinimide (0.38 g, 1.78 mmol) and azobisisobutyronitrile (10 mg) in dry CCl4 (40 ml) was heated under reflux in the presence of a 60 W lamp for 4 h. By this time, a maximum of 80% of the starting materials were converted into the product. Upon prolonged heating for a period of 8 h, no improvement has been observed with respect to yield nor new spot was observed as monitored by thin layer chromatography. The CCl4 layer was then stripped off and the gummy material was dissolved in dichloromethane (100 ml) and washed well with water (2 × 100 ml) and then with brine. The organic layer was dried (Na2SO4) and concentrated to afford the crude product as a light brown gum which was passed through a silica gel (100–200 mesh) column eluting with dichloromethane to get the pure title compound as a white crystalline solid (0.32 g, 60%; m.p. 361–362 K).

Refinement

All H atoms were constrained in a riding motion approximation, with Caryl—H = 0.93 Å and 0.97 Å for CH2. The Uiso(H) values were constrained to be 1.2Ueq of the carrier atom. The highest residual electron density peak is located at 0.72 Å from Br1 and the deepest hole is located at 0.61 Å from Br2.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.
Fig. 2.
The crystal packing of (I), viewed along the c axis showing chains along the b axis. Hydrogen bonds were shown as dash lines.
Fig. 3.
The crystal packing of (I), viewed along the b axis showing the anti-parallel arrangement of the adjacent sheets. Hydrogen bonds and Br···Br short contact were shown as dash lines.

Crystal data

C10H11Br2O4PF(000) = 752
Mr = 385.96Dx = 1.984 Mg m3
Monoclinic, P21/cMelting point = 361–362 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.1315 (3) ÅCell parameters from 3756 reflections
b = 6.3095 (1) Åθ = 2.4–30.0°
c = 16.8901 (3) ŵ = 6.40 mm1
β = 92.196 (2)°T = 296 K
V = 1291.88 (4) Å3Needle, colourless
Z = 40.45 × 0.10 × 0.05 mm

Data collection

Bruker APEXII CCD area-detector diffractometer3756 independent reflections
Radiation source: fine-focus sealed tube1952 reflections with I > 2σ(I)
graphiteRint = 0.072
Detector resolution: 8.33 pixels mm-1θmax = 30.0°, θmin = 2.4°
ω scansh = −15→17
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −8→8
Tmin = 0.156, Tmax = 0.726l = −22→23
16007 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 0.99w = 1/[σ2(Fo2) + (0.0636P)2 + 0.3299P] where P = (Fo2 + 2Fc2)/3
3756 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = −0.91 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.60424 (5)0.36096 (9)0.21315 (3)0.0610 (2)
Br20.53167 (5)0.78769 (10)0.08461 (4)0.0719 (2)
P10.88523 (11)0.20179 (19)0.12969 (8)0.0438 (3)
O10.8686 (3)0.3316 (5)0.20749 (18)0.0463 (8)
O20.7744 (3)0.2261 (5)0.0802 (2)0.0495 (8)
O30.9159 (3)−0.0157 (5)0.1448 (3)0.0677 (11)
O40.9665 (3)0.3340 (5)0.0784 (2)0.0504 (8)
C10.7093 (4)0.5327 (6)0.1542 (3)0.0376 (10)
C20.8186 (4)0.5375 (7)0.2016 (3)0.0443 (11)
H2A0.86870.63400.17640.053*
H2B0.80630.59080.25440.053*
C30.7229 (4)0.4330 (7)0.0740 (3)0.0453 (11)
H3B0.65110.41920.04720.054*
H3C0.76770.52500.04220.054*
C40.6653 (4)0.7573 (7)0.1467 (3)0.0519 (13)
H4A0.72140.84490.12350.062*
H4B0.65350.81150.19940.062*
C51.0807 (4)0.3235 (7)0.0921 (3)0.0408 (11)
C61.1335 (5)0.4950 (9)0.1258 (3)0.0619 (15)
H6A1.09390.61320.14130.074*
C71.2469 (6)0.4884 (12)0.1362 (3)0.077 (2)
H7A1.28410.60400.15850.092*
C81.3055 (5)0.3123 (14)0.1139 (3)0.077 (2)
H8A1.38170.30870.12170.092*
C91.2510 (5)0.1428 (10)0.0803 (3)0.0640 (16)
H9A1.29040.02410.06510.077*
C101.1368 (4)0.1479 (8)0.0688 (3)0.0494 (12)
H10A1.09930.03360.04580.059*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0439 (3)0.0719 (4)0.0680 (4)−0.0032 (3)0.0128 (3)0.0258 (3)
Br20.0560 (4)0.0786 (4)0.0810 (5)0.0177 (3)0.0001 (3)0.0093 (3)
P10.0372 (7)0.0360 (6)0.0585 (8)−0.0025 (5)0.0049 (6)0.0049 (5)
O10.0419 (19)0.0494 (18)0.0472 (19)0.0009 (15)−0.0047 (15)0.0109 (14)
O20.048 (2)0.0423 (17)0.058 (2)0.0006 (15)−0.0007 (17)−0.0115 (15)
O30.056 (2)0.0374 (18)0.110 (3)0.0033 (17)0.011 (2)0.0135 (19)
O40.0383 (19)0.0516 (19)0.062 (2)0.0020 (15)0.0096 (16)0.0124 (16)
C10.038 (3)0.035 (2)0.040 (2)−0.0041 (19)0.006 (2)0.0020 (18)
C20.041 (3)0.047 (3)0.044 (3)0.001 (2)−0.003 (2)−0.004 (2)
C30.040 (3)0.052 (3)0.043 (3)0.001 (2)−0.005 (2)0.000 (2)
C40.044 (3)0.041 (3)0.070 (4)−0.001 (2)−0.002 (3)−0.001 (2)
C50.039 (3)0.046 (3)0.037 (2)−0.007 (2)0.008 (2)0.0027 (19)
C60.076 (4)0.056 (3)0.055 (3)−0.022 (3)0.020 (3)−0.009 (3)
C70.082 (5)0.097 (5)0.050 (3)−0.048 (4)−0.001 (3)−0.007 (3)
C80.048 (4)0.137 (6)0.045 (3)−0.029 (4)−0.008 (3)0.022 (4)
C90.049 (3)0.088 (4)0.055 (3)0.010 (3)0.004 (3)0.014 (3)
C100.043 (3)0.058 (3)0.048 (3)−0.005 (2)0.004 (2)−0.003 (2)

Geometric parameters (Å, °)

Br1—C11.971 (4)C3—H3C0.9700
Br2—C41.907 (5)C4—H4A0.9700
P1—O31.442 (4)C4—H4B0.9700
P1—O21.563 (4)C5—C101.365 (7)
P1—O11.568 (3)C5—C61.371 (7)
P1—O41.576 (3)C6—C71.380 (9)
O1—C21.436 (5)C6—H6A0.9300
O2—C31.450 (6)C7—C81.380 (10)
O4—C51.398 (6)C7—H7A0.9300
C1—C31.509 (6)C8—C91.369 (9)
C1—C41.518 (6)C8—H8A0.9300
C1—C21.523 (6)C9—C101.392 (8)
C2—H2A0.9700C9—H9A0.9300
C2—H2B0.9700C10—H10A0.9300
C3—H3B0.9700
O3—P1—O2113.5 (2)H3B—C3—H3C107.9
O3—P1—O1112.9 (2)C1—C4—Br2115.4 (3)
O2—P1—O1105.14 (18)C1—C4—H4A108.4
O3—P1—O4116.0 (2)Br2—C4—H4A108.4
O2—P1—O4101.35 (19)C1—C4—H4B108.4
O1—P1—O4106.73 (19)Br2—C4—H4B108.4
C2—O1—P1118.8 (3)H4A—C4—H4B107.5
C3—O2—P1119.1 (3)C10—C5—C6122.0 (5)
C5—O4—P1121.4 (3)C10—C5—O4119.5 (4)
C3—C1—C4111.3 (4)C6—C5—O4118.4 (5)
C3—C1—C2110.9 (4)C5—C6—C7118.5 (6)
C4—C1—C2108.8 (4)C5—C6—H6A120.8
C3—C1—Br1108.6 (3)C7—C6—H6A120.8
C4—C1—Br1108.9 (3)C8—C7—C6120.7 (6)
C2—C1—Br1108.2 (3)C8—C7—H7A119.6
O1—C2—C1112.0 (4)C6—C7—H7A119.6
O1—C2—H2A109.2C9—C8—C7119.8 (6)
C1—C2—H2A109.2C9—C8—H8A120.1
O1—C2—H2B109.2C7—C8—H8A120.1
C1—C2—H2B109.2C8—C9—C10120.1 (6)
H2A—C2—H2B107.9C8—C9—H9A120.0
O2—C3—C1111.8 (4)C10—C9—H9A120.0
O2—C3—H3B109.3C5—C10—C9118.9 (5)
C1—C3—H3B109.3C5—C10—H10A120.5
O2—C3—H3C109.3C9—C10—H10A120.5
C1—C3—H3C109.3
O3—P1—O1—C2−168.7 (3)C2—C1—C3—O253.4 (5)
O2—P1—O1—C2−44.4 (4)Br1—C1—C3—O2−65.5 (4)
O4—P1—O1—C262.7 (4)C3—C1—C4—Br254.6 (5)
O3—P1—O2—C3168.0 (3)C2—C1—C4—Br2177.1 (3)
O1—P1—O2—C344.1 (4)Br1—C1—C4—Br2−65.2 (4)
O4—P1—O2—C3−66.9 (4)P1—O4—C5—C1074.5 (5)
O3—P1—O4—C5−44.2 (4)P1—O4—C5—C6−108.2 (4)
O2—P1—O4—C5−167.6 (3)C10—C5—C6—C70.0 (8)
O1—P1—O4—C582.6 (4)O4—C5—C6—C7−177.3 (4)
P1—O1—C2—C152.5 (5)C5—C6—C7—C8−0.6 (9)
C3—C1—C2—O1−54.0 (5)C6—C7—C8—C90.7 (9)
C4—C1—C2—O1−176.7 (4)C7—C8—C9—C10−0.2 (9)
Br1—C1—C2—O165.1 (4)C6—C5—C10—C90.4 (7)
P1—O2—C3—C1−52.0 (5)O4—C5—C10—C9177.7 (4)
C4—C1—C3—O2174.6 (4)C8—C9—C10—C5−0.4 (8)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2A···O3i0.972.353.217 (6)148
C3—H3B···Br20.972.823.233 (5)106
C4—H4A···O3i0.972.533.362 (6)144
C2—H2B···Cg1ii0.972.813.755 (5)166
C3—H3C···Cg1iii0.972.703.560 (5)148

Symmetry codes: (i) x, y+1, z; (ii) −x+2, y+1/2, −z+1/2; (iii) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2349).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Goswami, S. P. (1993). Heterocycles, 35, 1551–1570.
  • Goswami, S. P. & Adak, A. K. (2002). Tetrahedron Lett.43, 503–505.
  • Jones, P. G., Sheldrick, G. M., Kirby, A. J. & Briggs, A. J. (1984). Acta Cryst. C40, 1061–1065.
  • Pilato, R. S., Erickson, K. A., Greaney, M. A., Stiefel, E. I., Goswami, S. P., Kilpatric, L., Spiro, T. G., Taylor, E. C. & Rhiengold, A. L. (1991). J. Am. Chem. Soc.113, 9372–9374.
  • Polozov, A. M., Litvinov, I. A., Kataeva, O. N., Stolov, A. A., Yarkova, E. G., Khotinen, A. V. & Klimovitskii, E. N. (1995). J. Mol. Struct.356, 125–130.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Taylor, E. C. & Goswami, S. P. (1992). Tetrahedron Lett.32, 7357–7360.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography