PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2093.
Published online 2008 October 11. doi:  10.1107/S160053680803122X
PMCID: PMC2959740

1-(2,4-Dinitro­phenyl)-3-(4-methyl­phenyl)-4-phenyl­sulfanyl-1H-pyrazole

Abstract

In the title compound, C22H16N4O4S, the dihedral angles between the pyrazole ring and the pendant aromatic rings are 26.2 (1), 41.1 (1) and 89.5 (1)°. In the crystal structure, an intermolecular C—H(...)N bond helps to establish the packing. A short C(...)C contact of 3.110 (12) Å is observed between the C atom of the pyrazole CH group and one of the α-C atoms of the 4-methyl­phenyl ring.

Related literature

For related literature, see: Baraldi et al. (1998 [triangle]); Beddoes et al. (1986 [triangle]); Bruno et al. (1990 [triangle]); Cottineau et al. (2002 [triangle]); Londershausen (1996 [triangle]); Bernstein et al. (1995 [triangle]); Chen & Li (1998 [triangle]); Cordell (1981 [triangle]); Jin et al. (2004 [triangle]); Smith et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2093-scheme1.jpg

Experimental

Crystal data

  • C22H16N4O4S
  • M r = 432.45
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2093-efi1.jpg
  • a = 7.3802 (3) Å
  • b = 26.6996 (11) Å
  • c = 10.6691 (4) Å
  • β = 106.733 (2)°
  • V = 2013.31 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.20 mm−1
  • T = 293 (2) K
  • 0.25 × 0.21 × 0.19 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.951, T max = 0.963
  • 26409 measured reflections
  • 5987 independent reflections
  • 4104 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.154
  • S = 1.05
  • 5987 reflections
  • 282 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680803122X/bt2786sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803122X/bt2786Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

PR thanks Dr Babu Varghese, SAIF, IIT Madras, Chennai, India, for help with the data collection.

supplementary crystallographic information

Comment

Pyrazole derivatives have been reported to possess significant antiarrhythmic and sedative (Bruno et al., 1990), hypoglycemic (Cottineau et al., 2002), antiviral (Baraldi et al., 1998), and pesticidal (Londershausen,1996) activities.

The ORTEP plot of the structure is shown in Fig. 1. The pyrazole ring adopts planar conformation. The sum of the angles at N1 of the pyrazole ring (359.55°) is in accordance with sp2 hybridization (Beddoes et al., 1986). The C—N bond lengths in the pyrazole ring are 1.319 (2) and 1.352 (2) Å, which are shorter than a C—N single bond length of 1.443 Å, but longer than a double bond length of 1.269 Å (Jin et al., 2004), indicating electron delocalization. The pyrazole ring A and phenyl sulfide ring D are orthogonal with the inter-ring dihedral angle of 89.54 (10)°, whereas the dinitrophenyl and methylphenyl rings are twisted from the pyrazole ring as can be seen from the dihedral angles of 26.18 (10)° and 41.12 (10)°, respectively.

The crystal structure is stabilized by C—H···N types of intra and intermolecular interactions in addition to van der Waals forces. Atom C5 in the molecule at (x, y, z) donates a proton to atom N2 at (x, -1/2 - y, 1/2 + z) to form a one dimensional C4 chain running along c axis (Fig. 2.). Short intermolecular contacts are observed between the atoms C5 and C15 (3.11 Å).

Experimental

A mixture of 1-(4-Methylphenyl)-2-(phenylsulfanyl)-1-ethanone 1-(2,4-dinitrophenyl)hydrazone (0.001 mole) dissolved in dimethylforamide (5 ml) in a 30 ml conical flask was allowed to cool in ice with stirring. To this stirred solution, phosphorus oxychloride (0.008 mole) was added dropwise and the mixture was subjected to microwave irritation for 60 sec. under 40% power with pulse rate 15 sec. The reaction was monitored by TLC and after completion of the reaction, the reaction mixture was poured onto crushed ice. The solid was suction filtered and washed with plenty of water. The final product 1-(2,4-Dinitrophenyl)-3-(4-methylphenyl)-1H-4- pyrazolyl phenyl sulfide was purified by column chromatography silica gel (60–120 mesh) using petroleum ether- ethyl acetate as eluent.

Refinement

H atoms were positioned geometrically (C—H=0.93–0.96 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5 Ueq(C) for methyl H and Uiso(H) = 1.2 Ueq(C) other H atoms. The components of the anisotropic displacement parameters of C24 and C25 in the direction of the bond between them were restrained to be equal within an effective standard deviation of 0.01.

Figures

Fig. 1.
Perspective view of the molecule showing the thermal ellipsoids are drawn at 50% probability level. The H atoms are shown as small spheres of arbitrary radii.
Fig. 2.
The packing diagram viewed down c axis.

Crystal data

C22H16N4O4SF(000) = 896
Mr = 432.45Dx = 1.427 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5342 reflections
a = 7.3802 (3) Åθ = 1.5–30.3°
b = 26.6996 (11) ŵ = 0.20 mm1
c = 10.6691 (4) ÅT = 293 K
β = 106.733 (2)°Block, colorless
V = 2013.31 (14) Å30.25 × 0.21 × 0.19 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer5987 independent reflections
Radiation source: fine-focus sealed tube4104 reflections with I > 2σ(I)
graphiteRint = 0.031
ω and [var phi] scansθmax = 30.3°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −10→10
Tmin = 0.951, Tmax = 0.963k = −36→37
26409 measured reflectionsl = −14→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.154w = 1/[σ2(Fo2) + (0.0774P)2 + 0.3656P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.039
5987 reflectionsΔρmax = 0.38 e Å3
282 parametersΔρmin = −0.27 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0074 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.24305 (7)0.133863 (17)0.05946 (4)0.04676 (15)
O10.8025 (2)0.24070 (6)0.22748 (16)0.0669 (4)
O20.8088 (3)0.29587 (8)0.37625 (14)0.0842 (6)
O30.8511 (3)0.46380 (7)0.2362 (2)0.0960 (7)
O40.7256 (4)0.48434 (8)0.0364 (3)0.1256 (9)
N10.4753 (2)0.25931 (5)0.00834 (11)0.0335 (3)
N20.4052 (2)0.24683 (5)−0.12163 (11)0.0347 (3)
C30.3241 (2)0.20272 (6)−0.12297 (13)0.0322 (3)
C40.3385 (2)0.18664 (6)0.00663 (14)0.0347 (3)
C50.4325 (2)0.22374 (6)0.08542 (14)0.0357 (4)
H50.46230.22460.17620.043*
C60.5566 (2)0.30667 (6)0.04053 (14)0.0345 (3)
C70.6824 (2)0.31920 (7)0.16180 (15)0.0391 (4)
C80.7453 (3)0.36745 (7)0.19047 (19)0.0483 (4)
H80.82430.37570.27280.058*
C90.6891 (3)0.40307 (7)0.0953 (2)0.0502 (5)
C100.5710 (3)0.39244 (7)−0.0262 (2)0.0518 (5)
H100.53680.4172−0.08990.062*
C110.5037 (3)0.34446 (6)−0.05236 (17)0.0433 (4)
H110.42090.3371−0.13400.052*
N120.7691 (2)0.28207 (7)0.26313 (15)0.0524 (4)
N130.7602 (3)0.45433 (7)0.1245 (3)0.0727 (6)
C140.2370 (2)0.17731 (6)−0.24803 (14)0.0339 (3)
C150.1349 (2)0.20461 (6)−0.35568 (15)0.0384 (4)
H150.11540.2387−0.34740.046*
C160.0619 (3)0.18132 (7)−0.47542 (16)0.0458 (4)
H16−0.00590.2001−0.54700.055*
C170.0875 (3)0.13087 (7)−0.49080 (16)0.0461 (4)
C180.1858 (3)0.10358 (7)−0.38248 (17)0.0460 (4)
H180.20270.0693−0.39080.055*
C190.2596 (3)0.12621 (6)−0.26211 (15)0.0409 (4)
H190.32450.1071−0.19030.049*
C200.0110 (4)0.10575 (10)−0.62168 (19)0.0699 (6)
H20A−0.02250.0718−0.60900.105*
H20B0.10580.1060−0.66720.105*
H20C−0.09910.1234−0.67230.105*
C210.4319 (3)0.09067 (6)0.09185 (15)0.0452 (4)
C220.5983 (3)0.09830 (8)0.06220 (19)0.0548 (5)
H220.61940.12820.02390.066*
C230.7352 (3)0.06106 (9)0.0897 (2)0.0709 (7)
H230.84780.06580.06860.085*
C240.7049 (4)0.01713 (9)0.1480 (2)0.0782 (7)
H240.7973−0.00770.16690.094*
C250.5401 (5)0.01001 (9)0.1779 (2)0.0788 (7)
H250.5206−0.01970.21770.095*
C260.4027 (4)0.04593 (7)0.15001 (19)0.0621 (6)
H260.28960.04050.16990.075*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0607 (3)0.0369 (2)0.0481 (2)−0.0063 (2)0.0242 (2)0.00621 (17)
O10.0606 (10)0.0587 (10)0.0737 (10)0.0097 (8)0.0071 (8)0.0176 (8)
O20.0954 (13)0.1076 (14)0.0373 (7)−0.0208 (11)−0.0005 (8)0.0040 (8)
O30.0905 (14)0.0649 (11)0.1282 (17)−0.0231 (10)0.0248 (12)−0.0467 (11)
O40.168 (2)0.0447 (11)0.149 (2)−0.0344 (13)0.0217 (18)0.0081 (12)
N10.0451 (8)0.0293 (6)0.0273 (5)−0.0015 (6)0.0123 (5)−0.0012 (5)
N20.0440 (8)0.0342 (7)0.0267 (6)−0.0006 (6)0.0117 (5)0.0003 (5)
C30.0383 (8)0.0296 (8)0.0300 (6)0.0013 (6)0.0118 (6)0.0005 (5)
C40.0464 (9)0.0284 (8)0.0318 (7)0.0010 (7)0.0154 (6)0.0018 (5)
C50.0489 (10)0.0332 (8)0.0275 (6)0.0026 (7)0.0150 (6)0.0019 (6)
C60.0389 (9)0.0305 (8)0.0359 (7)−0.0007 (6)0.0137 (6)−0.0020 (6)
C70.0380 (9)0.0421 (9)0.0380 (8)−0.0018 (7)0.0123 (7)−0.0010 (7)
C80.0429 (10)0.0518 (11)0.0507 (10)−0.0090 (8)0.0142 (8)−0.0163 (8)
C90.0485 (11)0.0332 (9)0.0721 (12)−0.0070 (8)0.0226 (10)−0.0095 (8)
C100.0588 (12)0.0331 (9)0.0629 (11)−0.0011 (8)0.0164 (9)0.0051 (8)
C110.0511 (10)0.0346 (9)0.0421 (8)−0.0013 (8)0.0100 (7)0.0020 (7)
N120.0445 (9)0.0629 (11)0.0452 (8)−0.0081 (8)0.0055 (7)0.0086 (7)
N130.0709 (13)0.0410 (10)0.1077 (17)−0.0137 (9)0.0283 (12)−0.0197 (11)
C140.0361 (8)0.0354 (8)0.0305 (7)−0.0019 (7)0.0101 (6)−0.0009 (6)
C150.0389 (9)0.0377 (9)0.0380 (8)0.0011 (7)0.0104 (7)0.0057 (6)
C160.0433 (10)0.0562 (11)0.0336 (7)−0.0003 (8)0.0043 (7)0.0085 (7)
C170.0450 (10)0.0574 (11)0.0337 (7)−0.0060 (9)0.0079 (7)−0.0058 (7)
C180.0543 (11)0.0395 (9)0.0419 (8)−0.0010 (8)0.0101 (8)−0.0079 (7)
C190.0490 (10)0.0371 (9)0.0331 (7)0.0037 (7)0.0064 (7)0.0001 (6)
C200.0766 (16)0.0857 (17)0.0393 (9)−0.0105 (13)0.0040 (10)−0.0183 (10)
C210.0660 (13)0.0320 (8)0.0312 (7)−0.0041 (8)0.0037 (8)−0.0015 (6)
C220.0586 (13)0.0430 (11)0.0522 (10)−0.0016 (9)−0.0009 (9)−0.0016 (8)
C230.0576 (14)0.0649 (15)0.0721 (14)0.0066 (11)−0.0098 (11)−0.0138 (12)
C240.0903 (16)0.0486 (13)0.0683 (14)0.0214 (12)−0.0207 (12)−0.0075 (11)
C250.1190 (19)0.0403 (12)0.0612 (13)0.0079 (13)0.0006 (13)0.0060 (10)
C260.0971 (18)0.0356 (10)0.0508 (10)−0.0017 (11)0.0168 (11)0.0063 (8)

Geometric parameters (Å, °)

S1—C41.7401 (16)C14—C151.386 (2)
S1—C211.765 (2)C14—C191.388 (2)
O1—N121.217 (2)C15—C161.383 (2)
O2—N121.214 (2)C15—H150.9300
O3—N131.214 (3)C16—C171.377 (3)
O4—N131.205 (3)C16—H160.9300
N1—C51.3519 (19)C17—C181.382 (3)
N1—N21.3741 (16)C17—C201.505 (2)
N1—C61.399 (2)C18—C191.381 (2)
N2—C31.319 (2)C18—H180.9300
C3—C41.4223 (19)C19—H190.9300
C3—C141.470 (2)C20—H20A0.9600
C4—C51.354 (2)C20—H20B0.9600
C5—H50.9300C20—H20C0.9600
C6—C111.389 (2)C21—C221.368 (3)
C6—C71.399 (2)C21—C261.391 (3)
C7—C81.374 (3)C22—C231.387 (3)
C7—N121.470 (2)C22—H220.9300
C8—C91.366 (3)C23—C241.376 (4)
C8—H80.9300C23—H230.9300
C9—C101.368 (3)C24—C251.356 (4)
C9—N131.467 (3)C24—H240.9300
C10—C111.373 (3)C25—C261.365 (4)
C10—H100.9300C25—H250.9300
C11—H110.9300C26—H260.9300
C4—S1—C21102.82 (9)C19—C14—C3121.15 (14)
C5—N1—N2110.95 (12)C16—C15—C14120.23 (16)
C5—N1—C6130.11 (12)C16—C15—H15119.9
N2—N1—C6118.49 (12)C14—C15—H15119.9
C3—N2—N1105.38 (11)C17—C16—C15121.31 (16)
N2—C3—C4110.62 (13)C17—C16—H16119.3
N2—C3—C14120.03 (12)C15—C16—H16119.3
C4—C3—C14129.34 (14)C16—C17—C18118.25 (15)
C5—C4—C3105.32 (13)C16—C17—C20121.27 (18)
C5—C4—S1125.04 (11)C18—C17—C20120.48 (19)
C3—C4—S1129.45 (12)C19—C18—C17121.21 (17)
N1—C5—C4107.69 (13)C19—C18—H18119.4
N1—C5—H5126.2C17—C18—H18119.4
C4—C5—H5126.2C18—C19—C14120.21 (15)
C11—C6—C7117.49 (15)C18—C19—H19119.9
C11—C6—N1117.95 (14)C14—C19—H19119.9
C7—C6—N1124.52 (14)C17—C20—H20A109.5
C8—C7—C6121.46 (16)C17—C20—H20B109.5
C8—C7—N12114.90 (16)H20A—C20—H20B109.5
C6—C7—N12123.46 (15)C17—C20—H20C109.5
C9—C8—C7118.47 (17)H20A—C20—H20C109.5
C9—C8—H8120.8H20B—C20—H20C109.5
C7—C8—H8120.8C22—C21—C26119.7 (2)
C8—C9—C10122.32 (17)C22—C21—S1124.62 (14)
C8—C9—N13118.6 (2)C26—C21—S1115.67 (17)
C10—C9—N13119.12 (19)C21—C22—C23119.4 (2)
C9—C10—C11118.73 (18)C21—C22—H22120.3
C9—C10—H10120.6C23—C22—H22120.3
C11—C10—H10120.6C24—C23—C22120.2 (3)
C10—C11—C6121.46 (17)C24—C23—H23119.9
C10—C11—H11119.3C22—C23—H23119.9
C6—C11—H11119.3C25—C24—C23120.0 (2)
O2—N12—O1124.99 (19)C25—C24—H24120.0
O2—N12—C7117.12 (19)C23—C24—H24120.0
O1—N12—C7117.82 (15)C24—C25—C26120.7 (2)
O4—N13—O3124.1 (2)C24—C25—H25119.6
O4—N13—C9118.2 (2)C26—C25—H25119.6
O3—N13—C9117.8 (2)C25—C26—C21120.0 (3)
C15—C14—C19118.75 (14)C25—C26—H26120.0
C15—C14—C3120.07 (14)C21—C26—H26120.0
C5—N1—N2—C3−1.74 (18)C8—C7—N12—O234.3 (2)
N2—N1—N2—C30(64)C6—C7—N12—O2−150.55 (18)
C6—N1—N2—C3−174.80 (14)C8—C7—N12—O1−142.78 (18)
N1—N2—C3—C40.97 (18)C6—C7—N12—O132.4 (3)
N1—N2—C3—C14−178.58 (14)C8—C9—N13—O4172.7 (2)
N2—C3—C4—C50.11 (19)C10—C9—N13—O4−6.6 (3)
C14—C3—C4—C5179.60 (16)C8—C9—N13—O3−7.0 (3)
N2—C3—C4—S1175.28 (13)C10—C9—N13—O3173.7 (2)
C14—C3—C4—S1−5.2 (3)N2—C3—C14—C15−39.9 (2)
C21—S1—C4—C5−89.59 (16)C4—C3—C14—C15140.64 (18)
C21—S1—C4—C396.11 (16)N2—C3—C14—C19138.13 (17)
N2—N1—C5—C41.85 (19)C4—C3—C14—C19−41.3 (3)
C6—N1—C5—C4173.86 (16)C19—C14—C15—C16−1.8 (2)
C3—C4—C5—N1−1.17 (18)C3—C14—C15—C16176.31 (15)
S1—C4—C5—N1−176.61 (12)C14—C15—C16—C170.3 (3)
C5—N1—C6—C11−148.40 (17)C15—C16—C17—C181.1 (3)
N2—N1—C6—C1123.1 (2)C15—C16—C17—C20−178.87 (18)
C5—N1—C6—C729.1 (3)C16—C17—C18—C19−1.0 (3)
N2—N1—C6—C7−159.39 (15)C20—C17—C18—C19178.95 (19)
C11—C6—C7—C82.8 (2)C17—C18—C19—C14−0.5 (3)
N1—C6—C7—C8−174.74 (16)C15—C14—C19—C181.9 (3)
C11—C6—C7—N12−172.09 (16)C3—C14—C19—C18−176.21 (16)
N1—C6—C7—N1210.4 (3)C4—S1—C21—C22−7.65 (17)
C6—C7—C8—C9−3.0 (3)C4—S1—C21—C26173.29 (14)
N12—C7—C8—C9172.26 (17)C26—C21—C22—C230.5 (3)
C7—C8—C9—C100.9 (3)S1—C21—C22—C23−178.52 (15)
C7—C8—C9—N13−178.39 (18)C21—C22—C23—C24−0.9 (3)
C8—C9—C10—C111.3 (3)C22—C23—C24—C250.5 (3)
N13—C9—C10—C11−179.38 (18)C23—C24—C25—C260.4 (4)
C9—C10—C11—C6−1.5 (3)C24—C25—C26—C21−0.8 (3)
C7—C6—C11—C10−0.5 (3)C22—C21—C26—C250.4 (3)
N1—C6—C11—C10177.22 (17)S1—C21—C26—C25179.46 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5···N2i0.932.443.2847 (18)152

Symmetry codes: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2786).

References

  • Baraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165–2171.
  • Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Il Farmaco, 45, 147–166. [PubMed]
  • Chen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ.19, 572–576.
  • Cordell, G. (1981). Introduction to Alkaloids: a Biogenic Approach New York: Wiley International.
  • Cottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem.12, 2105–2108. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Jin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst C60, o642–o643. [PubMed]
  • Londershausen, M. (1996). Pestic. Sci.48, 269–274.
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol.432, 107–119. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography