PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2067.
Published online 2008 October 4. doi:  10.1107/S1600536808031371
PMCID: PMC2959739

(E)-2-Chloro-N′-(2-hydr­oxy-1-naphthyl­methyl­ene)benzohydrazide

Abstract

In the structue of the title compound, C18H13ClN2O2, a new Schiff base, the dihedral angle between the benzene and naphthyl ring system mean planes is 22.5 (2)°. The mol­ecule has an E configuration about the C=N bond, and an intra­molecular hydrogen bond involving the hydoxyl substituent on the naphthyl ring and the N′ atom of the hydrazide. The crystal structure is stabilized by inter­molecular N—H(...)O hydrogen bonds, forming one-dimensional chains running parallel to the a axis.

Related literature

For background on Schiff base compounds, hydrazone compounds and their biological properties, see: Kucukguzel et al. (2006 [triangle]); Khattab (2005 [triangle]); Karthikeyan et al. (2006 [triangle]); Okabe et al. (1993 [triangle]). For bond distances, see: Allen et al. (1987 [triangle]). For related structures, see: Shan et al. (2008 [triangle]); Fun et al. (2008 [triangle]); Yang (2008 [triangle]); Ma et al. (2008 [triangle]); Diao, Huang et al. (2008 [triangle]); Diao, Zhen et al. (2008 [triangle]); Ejsmont et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2067-scheme1.jpg

Experimental

Crystal data

  • C18H13ClN2O2
  • M r = 324.75
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2067-efi1.jpg
  • a = 7.2797 (14) Å
  • b = 29.148 (6) Å
  • c = 7.6889 (16) Å
  • β = 112.130 (3)°
  • V = 1511.3 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 298 (2) K
  • 0.32 × 0.27 × 0.26 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.920, T max = 0.934
  • 8693 measured reflections
  • 3255 independent reflections
  • 2320 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.105
  • S = 1.03
  • 3255 reflections
  • 213 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808031371/su2067sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031371/su2067Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Hydrazones and Schiff bases have attracted much attention for their excellent biological properties, especially for their potential pharmacological and antitumor properties (Kucukguzel et al., 2006; Khattab, 2005; Karthikeyan et al., 2006; Okabe et al., 1993). Recently, a large number of hydrazone derivatives have been prepared and structurally characterized (Shan et al., 2008; Fun et al., 2008; Yang, 2008; Ma et al., 2008; Diao, Huang et al., 2008; Diao, Zhen et al., 2008; Ejsmont et al., 2008). As part of an ongoing study, we report herein the crystal structure of the title compound, (I).

The molecular structure of compound (I) is shown in Fig. 1. The bond dstances and angles are normal (Allen et al., 1987). The dihedral angle between the phenyl and naphthyl ring mean planes is 22.5 (2)°. The compound displays an E configuration about the C═N bond, and an intramolecular hydrogen bond involving the hydoxyl substituent on the naphthyl ring and the N-atom of the hydrazide (Table 1). The crystal structure is stabilized by intermolecular N—H···O hydrogen bonds (Table 1), forming one-dimensional chains running parallel to the a axis, Fig. 2.

Experimental

Compound (I) was prepared by dissolving 2-Hydroxy-1-naphthaldehyde (1.0 mmol, 172.3 mg) in methanol (50 ml), then 2-chlorobenzohydrazide (1.0 mmol, 170.2 mg) was added slowly and the mixture kept at reflux with continuous stirring for 3 h. When the solution was cooled to room temperature a colourless crystalline powder appeared. This was filtered off and washed with methanol three times. Recrystallization from absolute methanol yielded block-shaped single crystals suitable for X-ray analysis.

Refinement

H-atom H2 was located in a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å. The other H-atoms were placed in calculated positions and treated as riding atoms: O–H = 0.82 Å, C–H = 0.93 Å, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of compound (I) with 30% probability displacement ellipsoids for non-H atoms.
Fig. 2.
Crystal packing of compound (I) viewed along the c axis (Hydrogen bonds are shown as dashed lines).

Crystal data

C18H13ClN2O2F(000) = 672
Mr = 324.75Dx = 1.427 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.2797 (14) ÅCell parameters from 2129 reflections
b = 29.148 (6) Åθ = 2.5–25.3°
c = 7.6889 (16) ŵ = 0.26 mm1
β = 112.130 (3)°T = 298 K
V = 1511.3 (5) Å3Block, colourless
Z = 40.32 × 0.27 × 0.26 mm

Data collection

Bruker SMART CCD area-detector diffractometer3255 independent reflections
Radiation source: fine-focus sealed tube2320 reflections with I > 2σ(I)
graphiteRint = 0.036
ω scansθmax = 27.0°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −9→9
Tmin = 0.920, Tmax = 0.935k = −31→37
8693 measured reflectionsl = −9→6

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0421P)2 + 0.2242P] where P = (Fo2 + 2Fc2)/3
3255 reflections(Δ/σ)max < 0.001
213 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = −0.20 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.90066 (8)0.109541 (17)0.58158 (8)0.05120 (18)
N10.9283 (2)0.28478 (5)0.6687 (2)0.0368 (4)
N20.8931 (2)0.25535 (5)0.5185 (2)0.0368 (4)
O10.9748 (2)0.30053 (5)1.0131 (2)0.0538 (4)
H10.97910.28550.92440.081*
O21.10008 (19)0.20185 (4)0.70363 (18)0.0444 (4)
C10.8785 (2)0.35871 (6)0.7742 (3)0.0344 (4)
C20.9227 (3)0.34426 (6)0.9575 (3)0.0393 (5)
C30.9128 (3)0.37438 (7)1.0959 (3)0.0474 (5)
H30.93820.36371.21670.057*
C40.8661 (3)0.41905 (8)1.0537 (3)0.0513 (6)
H40.85940.43861.14670.062*
C50.8273 (3)0.43664 (7)0.8724 (3)0.0451 (5)
C60.7811 (4)0.48343 (8)0.8286 (4)0.0652 (7)
H60.77390.50320.92100.078*
C70.7473 (4)0.49996 (8)0.6555 (5)0.0782 (9)
H70.71790.53090.62940.094*
C80.7564 (4)0.47067 (8)0.5156 (4)0.0739 (8)
H80.73340.48230.39660.089*
C90.7988 (3)0.42509 (7)0.5512 (3)0.0542 (6)
H90.80430.40610.45610.065*
C100.8341 (3)0.40654 (6)0.7300 (3)0.0388 (5)
C110.8664 (3)0.32609 (6)0.6287 (3)0.0355 (4)
H110.81270.33520.50370.043*
C120.9814 (3)0.21388 (6)0.5489 (3)0.0329 (4)
C130.9258 (2)0.18457 (6)0.3775 (3)0.0317 (4)
C140.8905 (3)0.13760 (6)0.3788 (3)0.0348 (4)
C150.8421 (3)0.11196 (7)0.2176 (3)0.0471 (5)
H150.81810.08070.22040.057*
C160.8291 (3)0.13237 (8)0.0521 (3)0.0529 (6)
H160.79640.1148−0.05650.064*
C170.8642 (3)0.17866 (7)0.0464 (3)0.0501 (5)
H170.85590.1924−0.06540.060*
C180.9117 (3)0.20441 (6)0.2079 (3)0.0396 (5)
H180.93490.23570.20370.048*
H20.799 (2)0.2634 (6)0.4086 (18)0.047 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0587 (3)0.0436 (3)0.0540 (4)−0.0002 (2)0.0242 (3)0.0116 (2)
N10.0399 (9)0.0341 (8)0.0326 (9)0.0012 (7)0.0095 (7)−0.0065 (7)
N20.0402 (9)0.0344 (8)0.0278 (9)0.0059 (7)0.0039 (7)−0.0035 (7)
O10.0788 (11)0.0439 (8)0.0389 (9)0.0039 (8)0.0224 (8)0.0056 (7)
O20.0500 (8)0.0404 (7)0.0294 (8)0.0053 (6)−0.0006 (6)0.0002 (6)
C10.0308 (9)0.0349 (10)0.0356 (11)−0.0021 (8)0.0105 (8)−0.0039 (8)
C20.0366 (10)0.0419 (11)0.0401 (12)−0.0046 (9)0.0154 (9)−0.0041 (9)
C30.0508 (12)0.0563 (13)0.0383 (12)−0.0091 (10)0.0205 (10)−0.0107 (10)
C40.0491 (12)0.0551 (13)0.0530 (15)−0.0102 (10)0.0228 (11)−0.0247 (11)
C50.0374 (11)0.0402 (11)0.0547 (14)−0.0054 (9)0.0141 (10)−0.0149 (10)
C60.0664 (16)0.0421 (13)0.079 (2)0.0021 (11)0.0187 (14)−0.0185 (13)
C70.092 (2)0.0353 (13)0.094 (2)0.0088 (12)0.0198 (18)0.0016 (14)
C80.096 (2)0.0482 (14)0.0684 (19)0.0107 (13)0.0212 (15)0.0119 (13)
C90.0691 (15)0.0403 (12)0.0506 (14)0.0050 (10)0.0196 (12)0.0016 (10)
C100.0328 (10)0.0354 (10)0.0457 (12)−0.0023 (8)0.0120 (9)−0.0045 (9)
C110.0353 (10)0.0362 (10)0.0318 (10)−0.0013 (8)0.0089 (8)−0.0015 (8)
C120.0338 (10)0.0324 (9)0.0301 (10)−0.0017 (8)0.0093 (8)0.0010 (8)
C130.0293 (9)0.0341 (9)0.0285 (10)0.0028 (8)0.0074 (8)−0.0017 (8)
C140.0318 (9)0.0339 (10)0.0361 (11)0.0023 (8)0.0097 (8)0.0005 (8)
C150.0470 (12)0.0372 (11)0.0528 (14)−0.0003 (9)0.0139 (10)−0.0097 (10)
C160.0553 (13)0.0575 (14)0.0384 (13)0.0062 (11)0.0091 (10)−0.0156 (11)
C170.0575 (13)0.0597 (14)0.0326 (12)0.0077 (11)0.0163 (10)0.0002 (10)
C180.0434 (11)0.0378 (10)0.0355 (11)0.0037 (9)0.0124 (9)0.0013 (9)

Geometric parameters (Å, °)

Cl1—C141.737 (2)C6—H60.9300
N1—C111.282 (2)C7—C81.394 (4)
N1—N21.383 (2)C7—H70.9300
N2—C121.347 (2)C8—C91.368 (3)
N2—H20.896 (9)C8—H80.9300
O1—C21.353 (2)C9—C101.408 (3)
O1—H10.8200C9—H90.9300
O2—C121.229 (2)C11—H110.9300
C1—C21.388 (3)C12—C131.493 (2)
C1—C101.443 (3)C13—C141.394 (2)
C1—C111.445 (3)C13—C181.395 (3)
C2—C31.402 (3)C14—C151.375 (3)
C3—C41.354 (3)C15—C161.375 (3)
C3—H30.9300C15—H150.9300
C4—C51.411 (3)C16—C171.377 (3)
C4—H40.9300C16—H160.9300
C5—C61.415 (3)C17—C181.379 (3)
C5—C101.418 (3)C17—H170.9300
C6—C71.348 (4)C18—H180.9300
C11—N1—N2116.37 (16)C8—C9—H9119.6
C12—N2—N1119.02 (15)C10—C9—H9119.6
C12—N2—H2123.0 (13)C9—C10—C5118.02 (18)
N1—N2—H2117.4 (13)C9—C10—C1122.90 (18)
C2—O1—H1109.5C5—C10—C1119.08 (19)
C2—C1—C10118.55 (17)N1—C11—C1121.25 (18)
C2—C1—C11120.65 (17)N1—C11—H11119.4
C10—C1—C11120.71 (17)C1—C11—H11119.4
O1—C2—C1122.49 (17)O2—C12—N2122.65 (17)
O1—C2—C3116.01 (18)O2—C12—C13123.31 (16)
C1—C2—C3121.50 (19)N2—C12—C13114.02 (15)
C4—C3—C2120.0 (2)C14—C13—C18117.70 (17)
C4—C3—H3120.0C14—C13—C12123.07 (17)
C2—C3—H3120.0C18—C13—C12119.22 (16)
C3—C4—C5121.66 (19)C15—C14—C13120.87 (19)
C3—C4—H4119.2C15—C14—Cl1117.58 (15)
C5—C4—H4119.2C13—C14—Cl1121.53 (14)
C4—C5—C6121.8 (2)C16—C15—C14120.25 (19)
C4—C5—C10119.08 (19)C16—C15—H15119.9
C6—C5—C10119.1 (2)C14—C15—H15119.9
C7—C6—C5121.2 (2)C15—C16—C17120.3 (2)
C7—C6—H6119.4C15—C16—H16119.8
C5—C6—H6119.4C17—C16—H16119.8
C6—C7—C8119.9 (2)C16—C17—C18119.4 (2)
C6—C7—H7120.0C16—C17—H17120.3
C8—C7—H7120.0C18—C17—H17120.3
C9—C8—C7120.9 (3)C17—C18—C13121.45 (18)
C9—C8—H8119.6C17—C18—H18119.3
C7—C8—H8119.6C13—C18—H18119.3
C8—C9—C10120.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.90 (1)1.97 (1)2.842 (2)164 (2)
O1—H1···N10.821.862.581 (2)146

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2067).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Diao, Y.-P., Huang, S.-S., Zhang, J.-K. & Kang, T.-G. (2008). Acta Cryst. E64, o470. [PMC free article] [PubMed]
  • Diao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008). Acta Cryst. E64, o101. [PMC free article] [PubMed]
  • Ejsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128. [PMC free article] [PubMed]
  • Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961–o1962. [PMC free article] [PubMed]
  • Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem.14, 7482–7489. [PubMed]
  • Khattab, S. N. (2005). Molecules10, 1218–1228. [PubMed]
  • Kucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem.41, 353–359. [PubMed]
  • Ma, H.-B., Huang, S.-S. & Diao, Y.-P. (2008). Acta Cryst. E64, o210. [PMC free article] [PubMed]
  • Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.
  • Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yang, D.-S. (2008). Acta Cryst. E64, o1759. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography