PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2103.
Published online 2008 October 11. doi:  10.1107/S1600536808031930
PMCID: PMC2959736

(E)-5-Chloro-3-(2,6-dichloro­benzyl­idene)­indolin-2-one

Abstract

There are two independent mol­ecules of the title compound, C15H8Cl3NO, in the asymmetric unit. Both form inversion dimers via pairs of hydrazide–carbonyl N—H(...)O hydrogen bonds.

Related literature

For background information on the pharmacological activities of 3-substituted indoline-2-ones, see: Andreani et al. (2006 [triangle]); Sun et al. (2003 [triangle]); Johnson et al. (2005 [triangle]). For related structures, see: Gayathri et al. (2008 [triangle]); Ali et al. (2008 [triangle]); De (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2103-scheme1.jpg

Experimental

Crystal data

  • C15H8Cl3NO
  • M r = 324.57
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2103-efi1.jpg
  • a = 8.0809 (6) Å
  • b = 13.4944 (11) Å
  • c = 14.3698 (16) Å
  • α = 63.116 (1)°
  • β = 82.973 (2)°
  • γ = 80.162 (1)°
  • V = 1375.3 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.66 mm−1
  • T = 296 (2) K
  • 0.39 × 0.28 × 0.21 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.785, T max = 0.874
  • 16659 measured reflections
  • 6438 independent reflections
  • 5292 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.158
  • S = 1.08
  • 6438 reflections
  • 361 parameters
  • H-atom parameters constrained
  • Δρmax = 0.53 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808031930/jh2068sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031930/jh2068Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful for grants from the Welch Foundation (grant No. N-118) and DARPA (grant No. HR0011-06-1-0032).

supplementary crystallographic information

Comment

3-Substituted indoline-2-ones have well recognized pharmacological activities, including antitumor properties (Andreani et al., 2006), receptor tyrosine kinase (RTK) inhibitors (Sun et al., 1998) and neuroprotective agents (D'Mello et al., 2005). To study their neuroprotective activity, a series of 3- and 3,5-substituted indoline-2-one derivatives have been synthesized and crystallized in our laboratory. As part of our studies on structure–activity relationships of 3-substituted indoline-2-ones and the importance of substituent at the 5-postion, the title compound was synthesized and its crystal structure was carried out. The study found the title compound adopted an E conformation in the structure (Fig. 1) and that converted into a mixture of E and Z isomers in DMSO-d6 solution. As expected, the substituent, O2, Cl5, and C10, lie essentially in the plane of the indole ring. The indolyl plane with that of phenyl are twisted, with the dihedral angles between the rings are 62.16 (10), 63.06 (6)°, respectively, for each independent molecule. It's similar to other indolin-2-one compounds (Gayathri et al., 2008; Ali et al., 2008; De, 2008) containing intermolecular hydrazide–carbonyl N—H···O hydrogen bonds. The H-bonds link two inverted molecules and a dimer is formed (Table 1).

Experimental

The title compound was synthesized by the condensation of 2,6-dichlorobenzaldehyde (1 mmol) with 5-chloro-oxindole (1 mmol) in ethanol (10 ml) in the presence of catalytic amount of piperidine (0.1 mmol). After refluxing for 3 hrs, the reaction mixture was left to stand overnight. The resulting crude solid was filtered, washed with cold ethanol (10 ml) and dried. Orange colored single crystals of the compound suitable for X-ray structure determination were recrystallized from ethanol.

Figures

Fig. 1.
A view of one of the independent molecules with displacement ellipsoids drawn at the 40% probability level. H atoms are presented as open circles with arbitrary radii. Atoms of another independent molecule were labeled as N21 C22 O22 C23 through C35 C36 ...
Fig. 2.
A unit cell packing view of the title compound. Dash lines indicate hydrogen bonds. For clarity, H atoms not involved in H-bonding were omitted.

Crystal data

C15H8Cl3NOZ = 4
Mr = 324.57F(000) = 656
Triclinic, P1Dx = 1.568 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0809 (6) ÅCell parameters from 9259 reflections
b = 13.4944 (11) Åθ = 2.6–28.2°
c = 14.3698 (16) ŵ = 0.66 mm1
α = 63.116 (1)°T = 296 K
β = 82.973 (2)°Rod, orange
γ = 80.162 (1)°0.39 × 0.28 × 0.21 mm
V = 1375.3 (2) Å3

Data collection

Bruker APEX CCD area-detector diffractometer6438 independent reflections
Radiation source: fine-focus sealed tube5292 reflections with I > 2σ(I)
graphiteRint = 0.028
Detector resolution: 83.33 pixels mm-1θmax = 28.2°, θmin = 1.6°
[var phi] and ω scansh = −10→10
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)k = −17→17
Tmin = 0.785, Tmax = 0.874l = −18→18
16659 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0786P)2 + 0.7214P] where P = (Fo2 + 2Fc2)/3
6438 reflections(Δ/σ)max < 0.001
361 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = −0.39 e Å3

Special details

Experimental. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.8654 (3)0.07885 (18)0.38440 (16)0.0441 (5)
H10.88340.09420.43400.053*
C20.9186 (3)−0.0212 (2)0.38197 (19)0.0419 (5)
O21.0019 (3)−0.10122 (17)0.44698 (16)0.0564 (5)
C30.8546 (3)−0.0123 (2)0.28386 (18)0.0366 (5)
C40.6911 (3)0.1609 (2)0.13832 (19)0.0407 (5)
H40.68380.12750.09500.049*
C50.6255 (4)0.2711 (2)0.1105 (2)0.0465 (6)
Cl50.53114 (14)0.34756 (7)−0.00817 (7)0.0780 (3)
C60.6336 (4)0.3220 (2)0.1745 (2)0.0532 (7)
H60.58710.39640.15400.064*
C70.7100 (4)0.2633 (2)0.2680 (2)0.0497 (6)
H70.71570.29680.31140.060*
C80.7778 (3)0.1536 (2)0.29584 (19)0.0399 (5)
C90.7679 (3)0.10133 (19)0.23239 (18)0.0355 (5)
C100.8876 (3)−0.0984 (2)0.26019 (19)0.0396 (5)
H100.9537−0.16080.30670.047*
C110.8348 (3)−0.10953 (18)0.17102 (18)0.0358 (5)
C120.6685 (3)−0.1043 (2)0.15124 (19)0.0405 (5)
Cl120.50744 (9)−0.07520 (7)0.23006 (6)0.0552 (2)
C130.6254 (4)−0.1275 (3)0.0740 (2)0.0534 (7)
H130.5128−0.12370.06320.064*
C140.7491 (4)−0.1563 (3)0.0131 (2)0.0614 (8)
H140.7202−0.1718−0.03930.074*
C150.9149 (4)−0.1623 (3)0.0288 (2)0.0559 (7)
H150.9991−0.1817−0.01240.067*
C160.9551 (3)−0.1393 (2)0.1065 (2)0.0426 (5)
Cl161.16558 (10)−0.14706 (9)0.12559 (7)0.0693 (3)
N210.3669 (3)0.12638 (17)0.40122 (17)0.0442 (5)
H210.39130.06000.40540.053*
C220.4168 (4)0.1590 (2)0.4684 (2)0.0441 (6)
O220.5053 (3)0.10166 (16)0.54222 (16)0.0602 (6)
C230.3436 (3)0.28014 (19)0.43404 (19)0.0411 (5)
C240.1590 (4)0.4078 (2)0.2758 (2)0.0457 (6)
H240.14570.47190.28630.055*
C250.0844 (4)0.4072 (2)0.1947 (2)0.0522 (7)
Cl25−0.04299 (14)0.52723 (8)0.11626 (7)0.0819 (3)
C260.1041 (4)0.3135 (3)0.1766 (2)0.0560 (7)
H260.05460.31640.12010.067*
C270.1976 (4)0.2155 (2)0.2423 (2)0.0517 (7)
H270.21070.15170.23130.062*
C280.2706 (3)0.2145 (2)0.32410 (19)0.0412 (5)
C290.2540 (3)0.3105 (2)0.34098 (19)0.0399 (5)
C300.3666 (3)0.3334 (2)0.48909 (19)0.0433 (6)
H300.42070.28940.55110.052*
C310.3183 (3)0.4519 (2)0.46532 (19)0.0414 (6)
C320.3765 (4)0.5398 (2)0.3753 (2)0.0451 (6)
Cl320.50911 (12)0.51303 (6)0.28279 (6)0.0612 (2)
C330.3398 (4)0.6498 (2)0.3583 (2)0.0524 (7)
H330.38180.70610.29790.063*
C340.2410 (4)0.6762 (2)0.4306 (3)0.0569 (8)
H340.21430.75070.41850.068*
C350.1809 (4)0.5927 (2)0.5213 (3)0.0562 (7)
H350.11420.61020.57070.067*
C360.2217 (4)0.4827 (2)0.5371 (2)0.0459 (6)
Cl360.14997 (12)0.37906 (7)0.65309 (6)0.0650 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0581 (13)0.0448 (12)0.0374 (11)0.0013 (10)−0.0110 (9)−0.0257 (9)
C20.0491 (14)0.0430 (13)0.0377 (12)0.0000 (11)−0.0068 (10)−0.0222 (11)
O20.0766 (14)0.0497 (11)0.0483 (11)0.0148 (10)−0.0283 (10)−0.0281 (9)
C30.0419 (12)0.0388 (12)0.0302 (11)−0.0033 (10)−0.0057 (9)−0.0157 (10)
C40.0504 (14)0.0393 (13)0.0345 (12)−0.0049 (10)−0.0047 (10)−0.0177 (10)
C50.0551 (15)0.0406 (13)0.0372 (13)−0.0008 (11)−0.0103 (11)−0.0113 (11)
Cl50.1182 (8)0.0484 (4)0.0584 (5)0.0115 (4)−0.0432 (5)−0.0139 (4)
C60.0665 (18)0.0371 (13)0.0557 (16)0.0052 (12)−0.0096 (14)−0.0228 (12)
C70.0644 (17)0.0419 (14)0.0500 (15)0.0009 (12)−0.0068 (13)−0.0284 (12)
C80.0436 (13)0.0435 (13)0.0361 (12)−0.0038 (10)−0.0026 (10)−0.0212 (11)
C90.0399 (12)0.0341 (11)0.0340 (11)−0.0038 (9)−0.0019 (9)−0.0166 (9)
C100.0469 (13)0.0360 (12)0.0351 (12)0.0021 (10)−0.0104 (10)−0.0156 (10)
C110.0456 (13)0.0287 (11)0.0329 (11)−0.0020 (9)−0.0061 (9)−0.0133 (9)
C120.0447 (13)0.0397 (12)0.0381 (12)−0.0058 (10)−0.0012 (10)−0.0182 (10)
Cl120.0485 (4)0.0678 (5)0.0578 (4)−0.0124 (3)0.0077 (3)−0.0361 (4)
C130.0503 (15)0.0683 (19)0.0521 (16)−0.0161 (14)−0.0043 (13)−0.0325 (15)
C140.071 (2)0.082 (2)0.0520 (17)−0.0184 (17)−0.0036 (14)−0.0451 (17)
C150.0613 (18)0.0677 (19)0.0483 (15)−0.0050 (14)0.0028 (13)−0.0364 (15)
C160.0408 (13)0.0451 (14)0.0415 (13)−0.0020 (10)−0.0053 (10)−0.0193 (11)
Cl160.0433 (4)0.1032 (7)0.0631 (5)0.0028 (4)−0.0077 (3)−0.0411 (5)
N210.0630 (14)0.0297 (10)0.0405 (11)−0.0003 (9)−0.0007 (10)−0.0185 (9)
C220.0616 (16)0.0313 (12)0.0376 (13)−0.0003 (11)0.0006 (11)−0.0164 (10)
O220.0968 (16)0.0346 (9)0.0476 (11)0.0152 (10)−0.0217 (11)−0.0203 (9)
C230.0538 (14)0.0291 (11)0.0378 (12)0.0022 (10)−0.0015 (11)−0.0153 (10)
C240.0586 (16)0.0361 (13)0.0421 (13)0.0010 (11)−0.0035 (12)−0.0192 (11)
C250.0617 (17)0.0485 (15)0.0395 (14)0.0050 (13)−0.0093 (12)−0.0160 (12)
Cl250.1096 (8)0.0673 (5)0.0607 (5)0.0255 (5)−0.0378 (5)−0.0257 (4)
C260.0694 (19)0.0619 (18)0.0438 (15)−0.0053 (15)−0.0094 (13)−0.0290 (14)
C270.0702 (19)0.0472 (15)0.0478 (15)−0.0081 (13)−0.0006 (13)−0.0303 (13)
C280.0498 (14)0.0355 (12)0.0387 (12)−0.0042 (10)0.0040 (10)−0.0185 (10)
C290.0515 (14)0.0366 (12)0.0337 (12)−0.0051 (10)−0.0003 (10)−0.0178 (10)
C300.0601 (16)0.0306 (12)0.0365 (12)0.0034 (10)−0.0111 (11)−0.0137 (10)
C310.0559 (15)0.0325 (12)0.0390 (12)0.0039 (10)−0.0152 (11)−0.0187 (10)
C320.0595 (16)0.0380 (13)0.0397 (13)0.0004 (11)−0.0133 (11)−0.0184 (11)
Cl320.0888 (6)0.0524 (4)0.0433 (4)−0.0095 (4)0.0018 (3)−0.0231 (3)
C330.0693 (18)0.0329 (13)0.0535 (16)−0.0012 (12)−0.0223 (14)−0.0148 (12)
C340.0660 (19)0.0317 (13)0.077 (2)0.0092 (12)−0.0240 (16)−0.0275 (14)
C350.0593 (17)0.0475 (15)0.071 (2)0.0038 (13)−0.0068 (15)−0.0374 (15)
C360.0572 (16)0.0380 (13)0.0453 (14)−0.0020 (11)−0.0082 (12)−0.0210 (11)
Cl360.0868 (6)0.0549 (4)0.0561 (4)−0.0154 (4)0.0106 (4)−0.0283 (4)

Geometric parameters (Å, °)

N1—C21.360 (3)N21—C221.352 (3)
N1—C81.398 (3)N21—C281.397 (3)
N1—H10.8600N21—H210.8600
C2—O21.219 (3)C22—O221.220 (3)
C2—C31.508 (3)C22—C231.509 (3)
C3—C101.329 (3)C23—C301.331 (3)
C3—C91.457 (3)C23—C291.456 (4)
C4—C51.378 (4)C24—C251.378 (4)
C4—C91.383 (3)C24—C291.382 (4)
C4—H40.9300C24—H240.9300
C5—C61.387 (4)C25—C261.383 (4)
C5—Cl51.736 (3)C25—Cl251.737 (3)
C6—C71.373 (4)C26—C271.385 (4)
C6—H60.9300C26—H260.9300
C7—C81.375 (4)C27—C281.372 (4)
C7—H70.9300C27—H270.9300
C8—C91.397 (3)C28—C291.404 (3)
C10—C111.475 (3)C30—C311.467 (3)
C10—H100.9300C30—H300.9300
C11—C121.391 (4)C31—C361.388 (4)
C11—C161.395 (3)C31—C321.398 (4)
C12—C131.378 (4)C32—C331.374 (4)
C12—Cl121.732 (3)C32—Cl321.733 (3)
C13—C141.370 (4)C33—C341.370 (4)
C13—H130.9300C33—H330.9300
C14—C151.369 (5)C34—C351.381 (5)
C14—H140.9300C34—H340.9300
C15—C161.373 (4)C35—C361.382 (4)
C15—H150.9300C35—H350.9300
C16—Cl161.734 (3)C36—Cl361.733 (3)
C2—N1—C8111.2 (2)C22—N21—C28111.3 (2)
C2—N1—H1124.4C22—N21—H21124.4
C8—N1—H1124.4C28—N21—H21124.4
O2—C2—N1125.9 (2)O22—C22—N21126.6 (2)
O2—C2—C3127.6 (2)O22—C22—C23126.5 (2)
N1—C2—C3106.4 (2)N21—C22—C23106.9 (2)
C10—C3—C9134.2 (2)C30—C23—C29134.6 (2)
C10—C3—C2120.2 (2)C30—C23—C22120.1 (2)
C9—C3—C2105.53 (19)C29—C23—C22105.2 (2)
C5—C4—C9118.1 (2)C25—C24—C29118.2 (2)
C5—C4—H4120.9C25—C24—H24120.9
C9—C4—H4120.9C29—C24—H24120.9
C4—C5—C6121.8 (2)C24—C25—C26122.0 (3)
C4—C5—Cl5118.7 (2)C24—C25—Cl25118.4 (2)
C6—C5—Cl5119.6 (2)C26—C25—Cl25119.6 (2)
C7—C6—C5120.3 (2)C25—C26—C27120.0 (3)
C7—C6—H6119.8C25—C26—H26120.0
C5—C6—H6119.8C27—C26—H26120.0
C6—C7—C8118.4 (2)C28—C27—C26118.5 (2)
C6—C7—H7120.8C28—C27—H27120.8
C8—C7—H7120.8C26—C27—H27120.8
C7—C8—C9121.6 (2)C27—C28—N21129.1 (2)
C7—C8—N1128.7 (2)C27—C28—C29121.5 (2)
C9—C8—N1109.7 (2)N21—C28—C29109.5 (2)
C4—C9—C8119.8 (2)C24—C29—C28119.8 (2)
C4—C9—C3133.0 (2)C24—C29—C23133.0 (2)
C8—C9—C3107.1 (2)C28—C29—C23107.2 (2)
C3—C10—C11129.5 (2)C23—C30—C31128.8 (2)
C3—C10—H10115.3C23—C30—H30115.6
C11—C10—H10115.3C31—C30—H30115.6
C12—C11—C16115.2 (2)C36—C31—C32115.6 (2)
C12—C11—C10124.4 (2)C36—C31—C30120.8 (2)
C16—C11—C10120.0 (2)C32—C31—C30123.4 (2)
C13—C12—C11122.5 (2)C33—C32—C31122.4 (3)
C13—C12—Cl12117.7 (2)C33—C32—Cl32116.8 (2)
C11—C12—Cl12119.70 (19)C31—C32—Cl32120.63 (19)
C14—C13—C12119.7 (3)C34—C33—C32119.7 (3)
C14—C13—H13120.1C34—C33—H33120.1
C12—C13—H13120.1C32—C33—H33120.1
C15—C14—C13120.3 (3)C33—C34—C35120.4 (2)
C15—C14—H14119.9C33—C34—H34119.8
C13—C14—H14119.9C35—C34—H34119.8
C14—C15—C16119.0 (3)C34—C35—C36118.7 (3)
C14—C15—H15120.5C34—C35—H35120.7
C16—C15—H15120.5C36—C35—H35120.7
C15—C16—C11123.3 (2)C35—C36—C31123.2 (3)
C15—C16—Cl16118.6 (2)C35—C36—Cl36117.9 (2)
C11—C16—Cl16118.14 (19)C31—C36—Cl36118.92 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.092.919 (3)162
N21—H21···O22ii0.862.022.838 (3)159

Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2068).

References

  • Ali, H. M., Laila, M., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, o921. [PMC free article] [PubMed]
  • Andreani, A., Burnelli, S., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Varoli, L. & Kunkel, M. W. (2006). J. Med. Chem 49, 6922–6924. [PubMed]
  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • De, A. (2008). Acta Cryst. E64, o562. [PMC free article] [PubMed]
  • Gayathri, D., Velmurugan, D., Shanthi, G., Perumal, P. T. & Ravikumar, K. (2008). Acta Cryst. E64, o501–o502. [PMC free article] [PubMed]
  • Johnson, K., Liu, L., Majdzadeh, N., Chavez, C., Chin, P. C., Morrison, B., Wang, L., Park, J., Chugh, P., Chen, H. & D’Mello, S. R. (2005). J. Neurochem.93, 538–548. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sun, L., Tran, N., Tang, F., App, H., Hirth, P., McMahon, G. & Tang, C. (2003). J. Med. Chem.46, 1116–1119. [PubMed]
  • Westrip, S. P. (2008). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography