PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): m1461.
Published online 2008 October 25. doi:  10.1107/S1600536808034387
PMCID: PMC2959732

Bis[2-(2-pyridylmethyl­eneamino)benzene­sulfonato-κ3 N,N′,O]cadmium(II) dihydrate

Abstract

The title complex, [Cd(Paba)2]·2H2O or [Cd(C12H9N2O3S)2]·2H2O, was synthesized by the reaction of the potassium salt of 2-(2-pyridylmethyl­eneamino)benzene­sulfonic acid (PabaK) with CdCl2·2.5H2O in methanol. The CdII atom lies on a crystallographic twofold axis and is coordinated by four N atoms and two O atoms from two deprotonated tridentate 2-(2-pyridylmethyl­eneamino)benzene­sulfonate ligands in a slightly distorted octa­hedral environment. There are extensive hydrogen bonds of the type O—H(...)O between the uncoordinated water molecules and the sulfonate O atoms, through which the complex forms a layered structure parallel to (001).

Related literature

For the isostructural Zn compound, see: Cai et al. (2008 [triangle]). For synthesis of the ligand, see: Casella & Gullotti (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1461-scheme1.jpg

Experimental

Crystal data

  • [Cd(C12H9N2O3S)2]·2H2O
  • M r = 670.98
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1461-efi2.jpg
  • a = 20.255 (4) Å
  • b = 7.8924 (17) Å
  • c = 16.475 (3) Å
  • V = 2633.7 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.04 mm−1
  • T = 291 (2) K
  • 0.23 × 0.08 × 0.05 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.798, T max = 0.950
  • 18106 measured reflections
  • 2443 independent reflections
  • 1672 reflections with I > 2σ(I)
  • R int = 0.075

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.075
  • S = 1.04
  • 2443 reflections
  • 177 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808034387/pk2123sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034387/pk2123Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was funded by the Guangxi Science Foundation of the Guangxi Zhuang Autonomous Region of the People’s Republic of China (grant No. 0731053).

supplementary crystallographic information

Comment

The title complex (Fig. 1) is isostructural with [Zn(Paba)2].2H2O, whose structure has been described in detail (Cai, et al., 2008). The six-coordinated CdII lies on a crystallographic 2-fold axis of rotation and two deprotonated PabaH anions coordinate to CdII in a facial arrangement as N,N',O-tridentate donor ligands.

The O—H donor group of the guest waters and the S=O acceptor group of the Paba ligands participate in the hydrogen bonding and form a two-dimensional network in the ab plane (Fig. 2).

Experimental

The potassium salt of 2-(2- pyridylmethyleneamino)benzenesulfonic acid(PabaK) was synthesized according to the literature methods (Casella & Gullotti, 1986).

For the preparation of the title complex, the ligand PabaK (1 mmol, 0.30 g) was dissolved in methanol (10 ml) at 333 K and an aqueous solution (10 ml) containing CdCl2.2.5H2O (0.5 mmol, 0.12 g) was added. The resulting mixture was stirred at 333 K for 4 h. Then the mixture was filtrated and the filtrate was left to stand at room temperature. Yellow crystals suitable for X-ray diffraction were obtained after a week in a yield of 35%. Elemental analysis,.found (%): C, 46.91; H, 3.36; N, 8.30; S, 9.45; calc (%): C, 42.96; H, 3.31; N, 8.35; S, 9.56.

Refinement

H atoms bonded to C were positioned geometrically with C—H distance 0.93 Å, and treated as riding atoms,with Uiso(H)= 1.2Ueq(C). Water hydrogens were placed in fixed positions and assigned Uiso values of 1.5 Ueq of the water oxygen atom.

Figures

Fig. 1.
An ellipsoid plot (30% probability) showing the numbering scheme. Dashed lines indicate hydrogen bonds. Symmetry code: 1# -x + 1, y, -z + 3/2.
Fig. 2.
2-D network, as viewed down the c axis. Dashed lines indicate hydrogen bonds.

Crystal data

[Cd(C12H9N2O3S)2]·2H2OF(000) = 1352
Mr = 670.98Dx = 1.692 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 2541 reflections
a = 20.255 (4) Åθ = 2.5–23.2°
b = 7.8924 (17) ŵ = 1.04 mm1
c = 16.475 (3) ÅT = 291 K
V = 2633.7 (9) Å3Block, colourless
Z = 40.23 × 0.08 × 0.05 mm

Data collection

Bruker SMART CCD area-detector diffractometer2443 independent reflections
Radiation source: fine-focus sealed tube1672 reflections with I > 2σ(I)
graphiteRint = 0.075
[var phi] and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −24→24
Tmin = 0.798, Tmax = 0.950k = −9→9
18106 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0212P)2 + 3.1957P] where P = (Fo2 + 2Fc2)/3
2443 reflections(Δ/σ)max = 0.001
177 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and isnot relevant to the choice of reflections for refinement. R-factors basedon F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.50000.68040 (5)0.75000.03074 (13)
S20.62752 (5)0.83468 (15)0.66388 (6)0.0372 (3)
N10.59409 (15)0.7358 (4)0.83494 (18)0.0302 (7)
C120.60345 (19)0.6263 (5)0.8904 (2)0.0382 (10)
H120.63930.63810.92530.046*
N30.50869 (16)0.4691 (4)0.84673 (18)0.0373 (8)
O10.64757 (15)0.6598 (4)0.67446 (17)0.0523 (8)
O20.55529 (12)0.8506 (4)0.66248 (15)0.0413 (7)
O30.65696 (14)0.9203 (4)0.59556 (16)0.0509 (8)
O40.69916 (18)0.4179 (6)0.5615 (2)0.1121 (17)
H1W0.68400.49040.59480.168*
H2W0.73240.37780.58330.168*
C10.65210 (16)0.9451 (5)0.7530 (3)0.0342 (9)
C20.63521 (18)0.8827 (5)0.8292 (2)0.0319 (9)
C30.6563 (2)0.9697 (6)0.8973 (3)0.0455 (11)
H30.64620.92810.94860.055*
C40.6920 (2)1.1170 (6)0.8899 (3)0.0552 (13)
H40.70571.17480.93610.066*
C50.7074 (2)1.1785 (6)0.8147 (3)0.0561 (13)
H50.73101.27900.80990.067*
C60.6880 (2)1.0922 (5)0.7457 (3)0.0481 (11)
H60.69921.13330.69470.058*
C70.55885 (19)0.4823 (5)0.9002 (2)0.0334 (9)
C80.5667 (2)0.3684 (5)0.9628 (2)0.0445 (11)
H80.60200.37800.99850.053*
C90.5212 (2)0.2402 (6)0.9716 (3)0.0520 (13)
H90.52530.16251.01380.062*
C100.4700 (2)0.2279 (5)0.9178 (3)0.0491 (12)
H100.43870.14240.92320.059*
C110.4654 (2)0.3423 (6)0.8565 (3)0.0465 (11)
H110.43080.33220.81970.056*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.0291 (2)0.0362 (2)0.0269 (2)0.000−0.00588 (19)0.000
S20.0355 (6)0.0497 (7)0.0265 (5)−0.0025 (6)−0.0008 (4)0.0002 (5)
N10.0246 (16)0.0403 (19)0.0257 (17)−0.0062 (15)−0.0016 (14)0.0016 (16)
C120.032 (2)0.055 (3)0.027 (2)0.000 (2)−0.0072 (18)−0.001 (2)
N30.043 (2)0.0398 (19)0.0289 (17)−0.0012 (18)−0.0090 (17)0.0029 (15)
O10.065 (2)0.047 (2)0.0442 (18)0.0116 (16)−0.0022 (15)−0.0107 (15)
O20.0329 (15)0.059 (2)0.0322 (15)−0.0061 (14)−0.0076 (12)0.0112 (14)
O30.0464 (18)0.077 (2)0.0296 (16)−0.0113 (17)0.0048 (14)0.0037 (16)
O40.066 (2)0.168 (4)0.102 (3)0.043 (3)−0.025 (2)−0.068 (3)
C10.0245 (18)0.044 (2)0.034 (2)0.0008 (16)−0.004 (2)−0.004 (2)
C20.024 (2)0.037 (2)0.034 (2)0.0001 (18)−0.0021 (18)−0.0005 (19)
C30.042 (3)0.062 (3)0.032 (2)−0.007 (2)0.001 (2)−0.004 (2)
C40.053 (3)0.070 (3)0.043 (3)−0.020 (3)−0.002 (2)−0.019 (2)
C50.048 (3)0.058 (3)0.062 (3)−0.026 (3)0.002 (2)−0.011 (3)
C60.042 (2)0.057 (3)0.045 (3)−0.012 (2)0.001 (2)0.000 (3)
C70.035 (2)0.036 (2)0.029 (2)−0.0003 (19)−0.0025 (18)−0.0014 (18)
C80.052 (3)0.047 (3)0.035 (2)0.006 (2)−0.011 (2)0.005 (2)
C90.081 (4)0.037 (3)0.038 (3)0.002 (2)−0.007 (2)0.010 (2)
C100.071 (3)0.036 (3)0.040 (3)−0.013 (2)−0.005 (2)0.001 (2)
C110.055 (3)0.045 (3)0.039 (3)−0.013 (2)−0.010 (2)0.004 (2)

Geometric parameters (Å, °)

Cd1—O2i2.267 (3)C1—C61.375 (5)
Cd1—O22.267 (3)C1—C21.390 (5)
Cd1—N3i2.313 (3)C2—C31.383 (5)
Cd1—N32.313 (3)C3—C41.374 (6)
Cd1—N1i2.405 (3)C3—H30.9300
Cd1—N12.405 (3)C4—C51.367 (6)
S2—O31.442 (3)C4—H40.9300
S2—O11.449 (3)C5—C61.381 (6)
S2—O21.469 (3)C5—H50.9300
S2—C11.779 (4)C6—H60.9300
N1—C121.272 (5)C7—C81.377 (5)
N1—C21.431 (5)C8—C91.376 (6)
C12—C71.461 (5)C8—H80.9300
C12—H120.9300C9—C101.368 (6)
N3—C111.340 (5)C9—H90.9300
N3—C71.349 (5)C10—C111.359 (6)
O4—H1W0.8502C10—H100.9300
O4—H2W0.8263C11—H110.9300
O2i—Cd1—O2107.31 (15)C6—C1—S2119.3 (4)
O2i—Cd1—N3i145.88 (11)C2—C1—S2120.2 (3)
O2—Cd1—N3i91.52 (11)C3—C2—C1118.7 (4)
O2i—Cd1—N391.52 (11)C3—C2—N1121.9 (4)
O2—Cd1—N3145.88 (11)C1—C2—N1119.3 (3)
N3i—Cd1—N387.74 (16)C4—C3—C2120.7 (4)
O2i—Cd1—N1i82.58 (10)C4—C3—H3119.6
O2—Cd1—N1i85.04 (10)C2—C3—H3119.6
N3i—Cd1—N1i70.73 (11)C5—C4—C3120.0 (4)
N3—Cd1—N1i126.32 (11)C5—C4—H4120.0
O2i—Cd1—N185.04 (10)C3—C4—H4120.0
O2—Cd1—N182.58 (10)C4—C5—C6120.4 (4)
N3i—Cd1—N1126.32 (11)C4—C5—H5119.8
N3—Cd1—N170.73 (11)C6—C5—H5119.8
N1i—Cd1—N1159.04 (16)C1—C6—C5119.6 (5)
O3—S2—O1115.11 (19)C1—C6—H6120.2
O3—S2—O2111.07 (17)C5—C6—H6120.2
O1—S2—O2111.26 (18)N3—C7—C8121.7 (4)
O3—S2—C1107.40 (18)N3—C7—C12117.0 (4)
O1—S2—C1106.80 (18)C8—C7—C12121.3 (4)
O2—S2—C1104.47 (17)C9—C8—C7118.8 (4)
C12—N1—C2120.8 (3)C9—C8—H8120.6
C12—N1—Cd1114.4 (3)C7—C8—H8120.6
C2—N1—Cd1124.8 (2)C10—C9—C8119.4 (4)
N1—C12—C7121.1 (4)C10—C9—H9120.3
N1—C12—H12119.5C8—C9—H9120.3
C7—C12—H12119.5C11—C10—C9119.2 (4)
C11—N3—C7118.2 (3)C11—C10—H10120.4
C11—N3—Cd1124.8 (3)C9—C10—H10120.4
C7—N3—Cd1116.9 (3)N3—C11—C10122.7 (4)
S2—O2—Cd1115.56 (15)N3—C11—H11118.6
H1W—O4—H2W105.8C10—C11—H11118.6
C6—C1—C2120.5 (4)
O2i—Cd1—N1—C1293.5 (3)O2—S2—C1—C6−113.1 (3)
O2—Cd1—N1—C12−158.3 (3)O3—S2—C1—C2−174.9 (3)
N3i—Cd1—N1—C12−71.9 (3)O1—S2—C1—C2−50.9 (3)
N3—Cd1—N1—C120.1 (3)O2—S2—C1—C267.1 (3)
N1i—Cd1—N1—C12147.4 (3)C6—C1—C2—C3−1.2 (6)
O2i—Cd1—N1—C2−82.9 (3)S2—C1—C2—C3178.6 (3)
O2—Cd1—N1—C225.3 (3)C6—C1—C2—N1175.8 (3)
N3i—Cd1—N1—C2111.7 (3)S2—C1—C2—N1−4.3 (5)
N3—Cd1—N1—C2−176.3 (3)C12—N1—C2—C3−39.6 (5)
N1i—Cd1—N1—C2−29.0 (3)Cd1—N1—C2—C3136.5 (3)
C2—N1—C12—C7175.6 (3)C12—N1—C2—C1143.4 (4)
Cd1—N1—C12—C7−0.9 (5)Cd1—N1—C2—C1−40.4 (4)
O2i—Cd1—N3—C1191.9 (3)C1—C2—C3—C41.4 (6)
O2—Cd1—N3—C11−143.3 (3)N1—C2—C3—C4−175.5 (4)
N3i—Cd1—N3—C11−53.9 (3)C2—C3—C4—C5−0.4 (7)
N1i—Cd1—N3—C1110.0 (4)C3—C4—C5—C6−0.9 (7)
N1—Cd1—N3—C11176.1 (3)C2—C1—C6—C5−0.1 (6)
O2i—Cd1—N3—C7−83.5 (3)S2—C1—C6—C5−179.9 (3)
O2—Cd1—N3—C741.3 (4)C4—C5—C6—C11.1 (7)
N3i—Cd1—N3—C7130.7 (3)C11—N3—C7—C80.9 (6)
N1i—Cd1—N3—C7−165.4 (2)Cd1—N3—C7—C8176.6 (3)
N1—Cd1—N3—C70.7 (3)C11—N3—C7—C12−177.2 (4)
O3—S2—O2—Cd1168.04 (16)Cd1—N3—C7—C12−1.4 (4)
O1—S2—O2—Cd138.4 (2)N1—C12—C7—N31.6 (6)
C1—S2—O2—Cd1−76.5 (2)N1—C12—C7—C8−176.5 (4)
O2i—Cd1—O2—S2118.00 (19)N3—C7—C8—C9−1.3 (6)
N3i—Cd1—O2—S2−90.86 (18)C12—C7—C8—C9176.7 (4)
N3—Cd1—O2—S2−2.6 (3)C7—C8—C9—C100.6 (7)
N1i—Cd1—O2—S2−161.36 (19)C8—C9—C10—C110.4 (7)
N1—Cd1—O2—S235.59 (17)C7—N3—C11—C100.2 (6)
O3—S2—C1—C64.9 (4)Cd1—N3—C11—C10−175.2 (3)
O1—S2—C1—C6128.9 (3)C9—C10—C11—N3−0.9 (7)

Symmetry codes: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H2W···O3ii0.832.272.968 (5)142
O4—H1W···O10.852.012.863 (5)179

Symmetry codes: (ii) −x+3/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2123).

References

  • Bruker (2004). SMART and SAINT Bruker AXS inc., Madison, Wisconsin, USA.
  • Cai, C.-X., Ou-Yang, M., Zhao, Z.-Y. & Jiang, Y.-M. (2008). Acta Cryst. E64, m1195. [PMC free article] [PubMed]
  • Casella, L. & Gullotti, M. (1986). Inorg. Chem.25, 1293–1303.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography