PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2201.
Published online 2008 October 25. doi:  10.1107/S1600536808032194
PMCID: PMC2959728

Tris(4-acetamido­phenoxy­methyl)methanol 0.7-hydrate

Abstract

The asymmetric unit of the title compound, C28H31N3O7·0.7H2O, contains a mol­ecule of tris­(4-acetamido­phenoxy­meth­yl)methanol and 0.7 of a water mol­ecule. An extensive hydrogen-bonding network includes inter­actions between all components of the crystal structure.

Related literature

For related structures, see: Haisa et al. (1980 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2201-scheme1.jpg

Experimental

Crystal data

  • C28H31N3O7·0.7H2O
  • M r = 534.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2201-efi1.jpg
  • a = 9.4900 (9) Å
  • b = 29.992 (3) Å
  • c = 9.3879 (9) Å
  • β = 90.257 (2)°
  • V = 2672.0 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 103 (2) K
  • 0.19 × 0.16 × 0.01 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.749, T max = 1.000 (expected range = 0.748–0.999)
  • 21154 measured reflections
  • 4527 independent reflections
  • 3113 reflections with I > 2σ(I)
  • R int = 0.070

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.131
  • S = 1.10
  • 4527 reflections
  • 363 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2002 [triangle]) and XPREP (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808032194/tk2305sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808032194/tk2305Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Crystallographic studies were supported in part by the Office of Naval Research (ONR) and the Naval Research Laboratory (NRL).

supplementary crystallographic information

Comment

Tris(4-acetamidophenoxymethyl) methanol is one of the key ingredients of a cast-curable explosive formulation. The material exists as a liquid when hot and can be poured into a mold of any desired shape. Upon cooling, the material forms a highly stable solid explosive. The title compound has been characterized crystallographically as a 0.7 water solvate, (I), Fig. 1. The derived geometric parameters are comparable to those observed for the related compound N-(4-Methoxyphenyl)acetamide (Haisa et al., 1980). The crystal structure of (I) is stabilized by an extensive network of hydrogen bonding interactions, Table 1.

Experimental

4-Acetamidophenol (179 mg, 1.19 mmol) and 2,2-bis(chloromethyloxirane) (54 mg, 0.38 mmol) were heated at 90 °C in the presence of K2CO3 (197 mg, 1.43 mmol) in acetonitrile (5 ml) for 22 h. After cooling to room temperature, the reaction mixture was poured into water (5 ml) and the precipitate was extracted with ethyl acetate (3 × 20 ml, if the precipitate can not be dissolved in ethyl acetate completely, about 5 ml of acetone was added to improve the solubility). The organic phase was washed with water (10 ml) and dried over Na2SO4. The solvent was evaporated in vacuo and the residue was recrystallized from hot ethyl acetate. The molecule was obtained as a white solid, 82 mg (44%); m.p. = 486 K, 1H NMR (DMSO-d6) δ 9.75 (s, 3H), 7.45 (d, J = 8.8 Hz, 6H), 6.88 (d, J = 8.8 Hz, 6H), 5.50 (bs, 1H), 4.09 (s, 6H), 1.99 (s, 9H) p.p.m. 13C NMR (CDCl3) δ 168.1, 154.8, 133.2, 120.8, 115.1, 72.9, 69.7, 24.2 p.p.m. A clear colorless crystal of (I) was grown by slow evaporation from ethyl acetate and characterized as a 0.7 hydrate (from fractional refinement).

Refinement

The non-water H atoms were included in the riding model approximation with O—H = 0.84, N—H = 0.88 and C—H = 0.95–0.99 Å, and with U(H) set to 1.2–1.5Ueq(O, N and C). The population of the solvent water molecule was allowed to refine. The result was a population of 0.70. The H atoms were refined with O—H = 0.850 (1) and with U(H) = 1.2Ueq(O).

Figures

Fig. 1.
View of (I) showing the atom labeling for the non-hydrogen atoms. Displacement ellipsoids are shown at the 50% probability level.

Crystal data

C28H31N3O7·0.7H2OZ = 4
Mr = 534.17F(000) = 1132
Monoclinic, P21/cDx = 1.328 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.4900 (9) ŵ = 0.10 mm1
b = 29.992 (3) ÅT = 103 K
c = 9.3879 (9) ÅPlate, colourless
β = 90.257 (2)°0.19 × 0.16 × 0.01 mm
V = 2672.0 (4) Å3

Data collection

Bruker SMART APEXII CCD diffractometer4527 independent reflections
Radiation source: fine focus sealed tube3113 reflections with I > 2σ(I)
graphiteRint = 0.070
ω scansθmax = 24.7°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Bruker, 2004)h = −11→11
Tmin = 0.749, Tmax = 1.000k = −35→35
21154 measured reflectionsl = −11→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.10w = 1/[σ2(Fo2) + (0.0231P)2 + 4.8705P] where P = (Fo2 + 2Fc2)/3
4527 reflections(Δ/σ)max < 0.001
363 parametersΔρmax = 0.24 e Å3
2 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.2725 (2)0.50948 (7)0.3966 (2)0.0218 (5)
H10.22210.53250.40100.026*
C10.3672 (3)0.51325 (10)0.2790 (4)0.0185 (7)
O1S0.8382 (4)0.34434 (13)0.7394 (4)0.0400 (14)0.700 (7)
H1SA0.774 (4)0.3262 (15)0.713 (6)0.048*0.700 (7)
H1SB0.848 (6)0.3678 (11)0.690 (5)0.048*0.700 (7)
C2A0.2906 (3)0.50761 (10)0.1358 (4)0.0204 (7)
H2AA0.35980.50390.05810.025*
H2AB0.22940.48090.13830.025*
C2B0.4378 (3)0.55887 (10)0.2908 (4)0.0199 (7)
H2BA0.36520.58250.29480.024*
H2BB0.49480.56040.37920.024*
C2C0.4724 (3)0.47572 (10)0.2976 (4)0.0191 (7)
H2CA0.54150.47600.21880.023*
H2CB0.52410.47910.38880.023*
O3C0.3941 (2)0.43482 (7)0.2967 (2)0.0213 (5)
O3B0.5258 (2)0.56558 (7)0.1702 (2)0.0217 (5)
O3A0.2078 (2)0.54665 (7)0.1123 (2)0.0228 (5)
C4C0.4656 (3)0.39563 (10)0.3235 (3)0.0191 (7)
C4B0.5890 (3)0.60715 (10)0.1605 (4)0.0183 (7)
C4A0.1464 (3)0.55113 (11)−0.0198 (4)0.0194 (7)
C5B0.5688 (3)0.64155 (10)0.2563 (4)0.0208 (8)
H5BA0.50470.63820.33300.025*
C5C0.6078 (3)0.39279 (11)0.3552 (4)0.0216 (8)
H5CA0.66410.41890.35920.026*
C5A0.0895 (3)0.59256 (11)−0.0490 (4)0.0237 (8)
H5AA0.09810.61600.01860.028*
C6B0.6432 (3)0.68105 (10)0.2392 (4)0.0202 (7)
H6BA0.62860.70490.30410.024*
C6C0.6673 (4)0.35123 (11)0.3811 (4)0.0228 (8)
H6CA0.76480.34910.40320.027*
C6A0.0198 (3)0.59996 (11)−0.1769 (4)0.0242 (8)
H6AA−0.01840.6286−0.19710.029*
C7B0.7386 (3)0.68620 (10)0.1289 (3)0.0169 (7)
C7C0.5864 (3)0.31298 (10)0.3752 (3)0.0193 (7)
C7A0.0054 (3)0.56569 (11)−0.2758 (4)0.0218 (8)
C8C0.3838 (4)0.35737 (11)0.3158 (4)0.0247 (8)
H8CA0.28650.35950.29260.030*
C8B0.7549 (4)0.65171 (11)0.0316 (4)0.0233 (8)
H8BA0.81790.6550−0.04600.028*
C8A0.0660 (4)0.52477 (12)−0.2465 (4)0.0278 (8)
H8AA0.05860.5014−0.31450.033*
C9B0.6799 (4)0.61262 (11)0.0474 (4)0.0230 (8)
H9BA0.69080.5893−0.02020.028*
C9C0.4435 (4)0.31615 (11)0.3418 (4)0.0257 (8)
H9CA0.38730.29000.33680.031*
C9A0.1373 (4)0.51726 (11)−0.1193 (4)0.0269 (8)
H9AA0.17960.4891−0.10090.032*
N10C0.6469 (3)0.26989 (9)0.3956 (3)0.0226 (7)
H10A0.66360.25330.32020.027*
N10B0.8192 (3)0.72619 (8)0.1210 (3)0.0198 (6)
H10B0.83680.73990.20210.024*
N10A−0.0753 (3)0.57205 (10)−0.4032 (3)0.0264 (7)
H10C−0.16760.5699−0.39830.032*
C11C0.6794 (4)0.25360 (11)0.5244 (4)0.0266 (8)
C11B0.8710 (3)0.74511 (11)0.0031 (4)0.0205 (8)
C11A−0.0173 (4)0.58104 (10)−0.5292 (4)0.0201 (8)
C12A−0.1164 (4)0.58705 (12)−0.6517 (4)0.0314 (9)
H12A−0.07230.5760−0.73900.047*
H12B−0.13860.6188−0.66280.047*
H12C−0.20330.5703−0.63380.047*
C12B0.9471 (4)0.78871 (11)0.0263 (4)0.0317 (9)
H12D1.01850.7926−0.04780.048*
H12E0.99280.78850.12010.048*
H12F0.87930.81330.02160.048*
C12C0.7326 (5)0.20622 (12)0.5285 (4)0.0425 (11)
H12G0.81160.20410.59570.064*
H12H0.76430.19750.43330.064*
H12I0.65660.18630.55910.064*
O13B0.8573 (3)0.72890 (8)−0.1172 (3)0.0296 (6)
O13A0.1115 (2)0.58529 (8)−0.5433 (3)0.0280 (6)
O13C0.6634 (3)0.27573 (8)0.6346 (3)0.0339 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0250 (13)0.0198 (12)0.0207 (13)0.0008 (10)0.0025 (10)0.0016 (10)
C10.0193 (17)0.0174 (17)0.0186 (19)0.0005 (14)0.0012 (14)0.0024 (14)
O1S0.059 (3)0.034 (3)0.027 (3)−0.013 (2)0.001 (2)0.0084 (18)
C2A0.0218 (18)0.0155 (17)0.024 (2)0.0035 (14)−0.0047 (15)0.0014 (14)
C2B0.0248 (18)0.0182 (17)0.0167 (19)0.0016 (14)0.0021 (15)0.0017 (14)
C2C0.0220 (17)0.0153 (16)0.0200 (19)−0.0026 (14)−0.0029 (14)0.0026 (14)
O3C0.0207 (12)0.0131 (11)0.0301 (14)−0.0012 (10)−0.0063 (10)0.0029 (10)
O3B0.0276 (12)0.0179 (12)0.0196 (14)−0.0022 (10)0.0062 (10)−0.0010 (10)
O3A0.0289 (13)0.0188 (12)0.0207 (14)0.0067 (10)−0.0066 (10)−0.0004 (10)
C4C0.0268 (18)0.0152 (17)0.0153 (19)0.0027 (14)−0.0017 (14)0.0004 (14)
C4B0.0222 (17)0.0133 (16)0.0193 (19)−0.0002 (14)−0.0020 (15)0.0024 (14)
C4A0.0184 (17)0.0223 (18)0.0176 (19)0.0001 (14)0.0001 (14)0.0003 (15)
C5B0.0214 (17)0.0208 (17)0.0200 (19)−0.0015 (14)0.0044 (15)0.0006 (15)
C5C0.0229 (18)0.0163 (17)0.026 (2)−0.0040 (14)−0.0040 (15)−0.0008 (15)
C5A0.0282 (19)0.0209 (18)0.022 (2)0.0030 (15)−0.0009 (16)0.0004 (15)
C6B0.0237 (18)0.0149 (17)0.022 (2)0.0031 (14)−0.0010 (15)−0.0042 (14)
C6C0.0235 (18)0.0215 (19)0.023 (2)0.0034 (15)−0.0040 (15)−0.0019 (15)
C6A0.0239 (18)0.0216 (18)0.027 (2)0.0053 (15)0.0028 (16)0.0072 (16)
C7B0.0203 (17)0.0146 (16)0.0158 (18)0.0003 (13)−0.0005 (14)0.0021 (14)
C7C0.0284 (19)0.0171 (17)0.0124 (18)0.0040 (15)0.0003 (14)−0.0003 (14)
C7A0.0140 (16)0.031 (2)0.020 (2)−0.0007 (15)0.0003 (14)0.0051 (16)
C8C0.0218 (18)0.0222 (18)0.030 (2)−0.0009 (15)−0.0044 (15)0.0029 (16)
C8B0.0311 (19)0.0214 (18)0.017 (2)−0.0016 (16)0.0071 (15)0.0024 (15)
C8A0.035 (2)0.0242 (19)0.025 (2)0.0022 (16)−0.0085 (17)−0.0027 (16)
C9B0.0315 (19)0.0188 (18)0.019 (2)0.0031 (15)0.0024 (16)−0.0026 (14)
C9C0.031 (2)0.0189 (18)0.027 (2)−0.0048 (15)−0.0006 (16)−0.0007 (16)
C9A0.034 (2)0.0193 (18)0.028 (2)0.0061 (16)−0.0109 (17)−0.0016 (16)
N10C0.0371 (17)0.0143 (14)0.0165 (16)0.0061 (13)−0.0005 (13)−0.0032 (12)
N10B0.0256 (15)0.0167 (14)0.0170 (16)−0.0010 (12)0.0000 (12)−0.0006 (12)
N10A0.0159 (14)0.0404 (18)0.0228 (18)0.0002 (13)−0.0046 (13)0.0068 (14)
C11C0.033 (2)0.0179 (18)0.029 (2)0.0020 (16)0.0021 (17)0.0042 (16)
C11B0.0226 (18)0.0190 (17)0.020 (2)0.0037 (14)0.0012 (15)0.0016 (15)
C11A0.0230 (19)0.0137 (16)0.023 (2)0.0040 (14)−0.0035 (15)−0.0019 (14)
C12A0.040 (2)0.0263 (19)0.028 (2)0.0026 (17)−0.0091 (17)−0.0021 (17)
C12B0.041 (2)0.0231 (19)0.031 (2)−0.0065 (17)0.0056 (18)0.0015 (17)
C12C0.070 (3)0.024 (2)0.033 (2)0.015 (2)−0.002 (2)0.0031 (18)
O13B0.0481 (16)0.0227 (13)0.0180 (14)−0.0045 (12)0.0022 (12)0.0025 (11)
O13A0.0245 (14)0.0340 (14)0.0254 (15)−0.0010 (11)−0.0015 (11)0.0024 (11)
O13C0.0609 (18)0.0208 (13)0.0200 (15)0.0049 (12)0.0006 (13)0.0017 (11)

Geometric parameters (Å, °)

O1—C11.431 (4)C7B—C8B1.389 (4)
O1—H10.8400C7B—N10B1.425 (4)
C1—C2C1.515 (4)C7C—C9C1.394 (5)
C1—C2B1.527 (4)C7C—N10C1.426 (4)
C1—C2A1.534 (5)C7A—C8A1.382 (5)
O1S—H1SA0.85 (4)C7A—N10A1.430 (4)
O1S—H1SB0.85 (4)C8C—C9C1.381 (5)
C2A—O3A1.427 (4)C8C—H8CA0.9500
C2A—H2AA0.9900C8B—C9B1.380 (5)
C2A—H2AB0.9900C8B—H8BA0.9500
C2B—O3B1.425 (4)C8A—C9A1.389 (5)
C2B—H2BA0.9900C8A—H8AA0.9500
C2B—H2BB0.9900C9B—H9BA0.9500
C2C—O3C1.434 (4)C9C—H9CA0.9500
C2C—H2CA0.9900C9A—H9AA0.9500
C2C—H2CB0.9900N10C—C11C1.338 (4)
O3C—C4C1.380 (4)N10C—H10A0.8800
O3B—C4B1.387 (4)N10B—C11B1.340 (4)
O3A—C4A1.374 (4)N10B—H10B0.8800
C4C—C5C1.383 (5)N10A—C11A1.334 (4)
C4C—C8C1.387 (5)N10A—H10C0.8800
C4B—C9B1.381 (5)C11C—O13C1.239 (4)
C4B—C5B1.383 (4)C11C—C12C1.509 (5)
C4A—C5A1.382 (4)C11B—O13B1.236 (4)
C4A—C9A1.383 (5)C11B—C12B1.509 (5)
C5B—C6B1.389 (4)C11A—O13A1.237 (4)
C5B—H5BA0.9500C11A—C12A1.493 (5)
C5C—C6C1.389 (5)C12A—H12A0.9800
C5C—H5CA0.9500C12A—H12B0.9800
C5A—C6A1.386 (5)C12A—H12C0.9800
C5A—H5AA0.9500C12B—H12D0.9800
C6B—C7B1.387 (5)C12B—H12E0.9800
C6B—H6BA0.9500C12B—H12F0.9800
C6C—C7C1.381 (5)C12C—H12G0.9800
C6C—H6CA0.9500C12C—H12H0.9800
C6A—C7A1.392 (5)C12C—H12I0.9800
C6A—H6AA0.9500
C1—O1—H1109.5C6C—C7C—N10C121.6 (3)
O1—C1—C2C105.6 (3)C9C—C7C—N10C118.8 (3)
O1—C1—C2B107.0 (3)C8A—C7A—C6A118.9 (3)
C2C—C1—C2B111.6 (3)C8A—C7A—N10A120.4 (3)
O1—C1—C2A111.8 (3)C6A—C7A—N10A120.7 (3)
C2C—C1—C2A109.2 (3)C9C—C8C—C4C120.1 (3)
C2B—C1—C2A111.6 (3)C9C—C8C—H8CA119.9
H1SA—O1S—H1SB116 (6)C4C—C8C—H8CA119.9
O3A—C2A—C1107.7 (3)C9B—C8B—C7B120.2 (3)
O3A—C2A—H2AA110.2C9B—C8B—H8BA119.9
C1—C2A—H2AA110.2C7B—C8B—H8BA119.9
O3A—C2A—H2AB110.2C7A—C8A—C9A121.1 (3)
C1—C2A—H2AB110.2C7A—C8A—H8AA119.5
H2AA—C2A—H2AB108.5C9A—C8A—H8AA119.5
O3B—C2B—C1109.1 (3)C8B—C9B—C4B120.5 (3)
O3B—C2B—H2BA109.9C8B—C9B—H9BA119.7
C1—C2B—H2BA109.9C4B—C9B—H9BA119.7
O3B—C2B—H2BB109.9C8C—C9C—C7C119.9 (3)
C1—C2B—H2BB109.9C8C—C9C—H9CA120.0
H2BA—C2B—H2BB108.3C7C—C9C—H9CA120.0
O3C—C2C—C1107.1 (2)C4A—C9A—C8A119.4 (3)
O3C—C2C—H2CA110.3C4A—C9A—H9AA120.3
C1—C2C—H2CA110.3C8A—C9A—H9AA120.3
O3C—C2C—H2CB110.3C11C—N10C—C7C122.9 (3)
C1—C2C—H2CB110.3C11C—N10C—H10A118.6
H2CA—C2C—H2CB108.6C7C—N10C—H10A118.6
C4C—O3C—C2C118.2 (2)C11B—N10B—C7B126.8 (3)
C4B—O3B—C2B115.8 (2)C11B—N10B—H10B116.6
C4A—O3A—C2A116.8 (2)C7B—N10B—H10B116.6
O3C—C4C—C5C124.8 (3)C11A—N10A—C7A123.2 (3)
O3C—C4C—C8C114.8 (3)C11A—N10A—H10C118.4
C5C—C4C—C8C120.4 (3)C7A—N10A—H10C118.4
C9B—C4B—C5B120.0 (3)O13C—C11C—N10C122.0 (3)
C9B—C4B—O3B115.4 (3)O13C—C11C—C12C121.7 (3)
C5B—C4B—O3B124.5 (3)N10C—C11C—C12C116.3 (3)
O3A—C4A—C5A115.5 (3)O13B—C11B—N10B123.4 (3)
O3A—C4A—C9A124.3 (3)O13B—C11B—C12B121.4 (3)
C5A—C4A—C9A120.2 (3)N10B—C11B—C12B115.1 (3)
C4B—C5B—C6B119.3 (3)O13A—C11A—N10A121.9 (3)
C4B—C5B—H5BA120.3O13A—C11A—C12A121.6 (3)
C6B—C5B—H5BA120.3N10A—C11A—C12A116.5 (3)
C4C—C5C—C6C119.2 (3)C11A—C12A—H12A109.5
C4C—C5C—H5CA120.4C11A—C12A—H12B109.5
C6C—C5C—H5CA120.4H12A—C12A—H12B109.5
C4A—C5A—C6A120.0 (3)C11A—C12A—H12C109.5
C4A—C5A—H5AA120.0H12A—C12A—H12C109.5
C6A—C5A—H5AA120.0H12B—C12A—H12C109.5
C7B—C6B—C5B121.0 (3)C11B—C12B—H12D109.5
C7B—C6B—H6BA119.5C11B—C12B—H12E109.5
C5B—C6B—H6BA119.5H12D—C12B—H12E109.5
C7C—C6C—C5C120.9 (3)C11B—C12B—H12F109.5
C7C—C6C—H6CA119.6H12D—C12B—H12F109.5
C5C—C6C—H6CA119.6H12E—C12B—H12F109.5
C5A—C6A—C7A120.3 (3)C11C—C12C—H12G109.5
C5A—C6A—H6AA119.8C11C—C12C—H12H109.5
C7A—C6A—H6AA119.8H12G—C12C—H12H109.5
C6B—C7B—C8B118.9 (3)C11C—C12C—H12I109.5
C6B—C7B—N10B119.0 (3)H12G—C12C—H12I109.5
C8B—C7B—N10B122.1 (3)H12H—C12C—H12I109.5
C6C—C7C—C9C119.5 (3)
O1—C1—C2A—O3A71.9 (3)C5C—C6C—C7C—N10C177.3 (3)
C2C—C1—C2A—O3A−171.7 (2)C5A—C6A—C7A—C8A−2.3 (5)
C2B—C1—C2A—O3A−47.8 (3)C5A—C6A—C7A—N10A175.3 (3)
O1—C1—C2B—O3B−175.9 (2)O3C—C4C—C8C—C9C−179.5 (3)
C2C—C1—C2B—O3B69.1 (3)C5C—C4C—C8C—C9C0.9 (5)
C2A—C1—C2B—O3B−53.4 (3)C6B—C7B—C8B—C9B−1.7 (5)
O1—C1—C2C—O3C59.4 (3)N10B—C7B—C8B—C9B176.7 (3)
C2B—C1—C2C—O3C175.2 (3)C6A—C7A—C8A—C9A1.5 (5)
C2A—C1—C2C—O3C−60.9 (3)N10A—C7A—C8A—C9A−176.1 (3)
C1—C2C—O3C—C4C−174.9 (3)C7B—C8B—C9B—C4B−0.7 (5)
C1—C2B—O3B—C4B175.3 (3)C5B—C4B—C9B—C8B2.3 (5)
C1—C2A—O3A—C4A171.0 (3)O3B—C4B—C9B—C8B−176.3 (3)
C2C—O3C—C4C—C5C1.8 (5)C4C—C8C—C9C—C7C−0.3 (5)
C2C—O3C—C4C—C8C−177.8 (3)C6C—C7C—C9C—C8C−0.4 (5)
C2B—O3B—C4B—C9B176.8 (3)N10C—C7C—C9C—C8C−177.4 (3)
C2B—O3B—C4B—C5B−1.7 (4)O3A—C4A—C9A—C8A176.4 (3)
C2A—O3A—C4A—C5A−168.4 (3)C5A—C4A—C9A—C8A−2.4 (5)
C2A—O3A—C4A—C9A12.8 (5)C7A—C8A—C9A—C4A0.8 (5)
C9B—C4B—C5B—C6B−1.5 (5)C6C—C7C—N10C—C11C78.5 (4)
O3B—C4B—C5B—C6B176.9 (3)C9C—C7C—N10C—C11C−104.7 (4)
O3C—C4C—C5C—C6C179.5 (3)C6B—C7B—N10B—C11B−151.8 (3)
C8C—C4C—C5C—C6C−0.9 (5)C8B—C7B—N10B—C11B29.9 (5)
O3A—C4A—C5A—C6A−177.2 (3)C8A—C7A—N10A—C11A−82.6 (4)
C9A—C4A—C5A—C6A1.7 (5)C6A—C7A—N10A—C11A99.9 (4)
C4B—C5B—C6B—C7B−0.9 (5)C7C—N10C—C11C—O13C−2.6 (5)
C4C—C5C—C6C—C7C0.2 (5)C7C—N10C—C11C—C12C175.6 (3)
C4A—C5A—C6A—C7A0.7 (5)C7B—N10B—C11B—O13B−1.9 (5)
C5B—C6B—C7B—C8B2.5 (5)C7B—N10B—C11B—C12B177.3 (3)
C5B—C6B—C7B—N10B−176.0 (3)C7A—N10A—C11A—O13A−1.3 (5)
C5C—C6C—C7C—C9C0.5 (5)C7A—N10A—C11A—C12A−179.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O13Ai0.841.972.798 (3)167
O1S—H1SB···O13Aii0.85 (4)2.00 (4)2.842 (4)168 (4)
N10C—H10A···O13Ciii0.881.952.812 (4)167
N10B—H10B···O13Biv0.881.952.824 (4)175
N10A—H10C···O3Cv0.882.363.197 (3)159
O1S—H1SA···O13C0.85 (4)1.98 (5)2.817 (5)167 (5)

Symmetry codes: (i) x, y, z+1; (ii) −x+1, −y+1, −z; (iii) x, −y+1/2, z−1/2; (iv) x, −y+3/2, z+1/2; (v) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2305).

References

  • Bruker (2002). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2006). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Haisa, M., Kashino, S., Ueno, T., Shinozaki, N. & Matsuzaki, Y. (1980). Acta Cryst. B36, 2306–2311.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography