PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): o2098.
Published online 2008 October 11. doi:  10.1107/S160053680803225X
PMCID: PMC2959722

3-Fluoro-N-(p-tol­yl)benzamide

Abstract

In the crystal structure of the title compound, C14H12FNO, the amide –NHCO– mean plane makes dihedral angles of 28.6 (2) and 37.5 (2)° with the mean planes through the fluoro­benzene and methyl­benzene units, respectively. The dihedral angle between the two benzene ring mean planes is 65.69 (10)°. In the crystal structure, mol­ecules are linked through N—H(...)O hydrogen bonds and stack along the b axis.

Related literature

For related structures, see: Chopra & Row (2005 [triangle]); Saeed et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2098-scheme1.jpg

Experimental

Crystal data

  • C14H12FNO
  • M r = 229.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2098-efi1.jpg
  • a = 27.645 (3) Å
  • b = 5.2618 (6) Å
  • c = 15.892 (2) Å
  • β = 93.519 (3)°
  • V = 2307.3 (5) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 223 (1) K
  • 0.40 × 0.35 × 0.18 mm

Data collection

  • Rigaku R-AXIS RAPIDII diffractometer
  • Absorption correction: numerical (ABSCOR; Higashi, 1999 [triangle]) T min = 0.968, T max = 0.983
  • 13860 measured reflections
  • 3357 independent reflections
  • 1779 reflections with I > 2σ(I)
  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.073
  • wR(F 2) = 0.240
  • S = 1.01
  • 3357 reflections
  • 158 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680803225X/su2064sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803225X/su2064Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The background to this study has been described in our earlier paper on 4-chloro-N-(2-chlorophenyl)-benzamide (Saeed et al., 2008).

In the crystal structure of the title compound the two benzene rings are considerably twisted with respect to one another, with a dihedral angle of 65.69 (10)°. The amide –NHCO– mean plane makes dihedral angles of 28.6 (2) and 37.5 (2)° with the best mean planes through the fluorobenzene and methylbenzene units, respectively. In the crystal the molecules are linked through N—H···O hydrogen bonds and stack up the b axis.

No C—H···F hydrogen bonds were observed here, in contrast to the situation in 4-fluoro-N-(2-fluorophenyl)-benzamide (Chopra & Row, 2005).

Experimental

4-Fluorobenzoyl chloride (5.4 mmol) in CHCl3 was treated with 4-methylaniline (21.6 mmol) under a nitrogen atmosphere at reflux for 4 h. Upon cooling the reaction mixture was diluted with CHCl3 and washed consecutively with aq 1 M HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in CHCl3 afforded the title compound (84%) as white needles: Anal. calcd. for C14H12FNO: C 73.35, H 5.28, N 6.11%; found: C 73.30, H 5.32, N 6.09%.

Refinement

The N-bound H atom was located in a difference Fourier map and was freely refined. The other H atoms were positioned geometrically (C—H = 0.94 and 0.97 Å) and treated as riding atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.
A view of the molecular structure of the title compound. The displacement ellipsoids are drawn at the 40% probability level.
Fig. 2.
A view along the b axis of the crystal packing of the title compound.

Crystal data

C14H12FNOF(000) = 960.00
Mr = 229.25Dx = 1.320 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2ycCell parameters from 7127 reflections
a = 27.645 (3) Åθ = 3.0–30.0°
b = 5.2618 (6) ŵ = 0.09 mm1
c = 15.892 (2) ÅT = 223 K
β = 93.519 (3)°Block, colorless
V = 2307.3 (5) Å30.40 × 0.35 × 0.18 mm
Z = 8

Data collection

Rigaku R-AXIS RAPIDII diffractometer1779 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.055
ω scansθmax = 30.0°
Absorption correction: numerical (ABSCOR; Higashi, 1999)h = −38→38
Tmin = 0.968, Tmax = 0.983k = −6→7
13860 measured reflectionsl = −22→22
3357 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.240H atoms treated by a mixture of independent and constrained refinement
S = 1.01w = 1/[σ2(Fo2) + (0.1335P)2] where P = (Fo2 + 2Fc2)/3
3357 reflections(Δ/σ)max = 0.001
158 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
F10.69906 (5)0.5995 (3)0.23465 (10)0.0965 (5)
O10.52251 (5)0.6096 (3)0.14071 (11)0.0781 (5)
N10.50521 (6)0.1882 (4)0.12722 (11)0.0639 (5)
C10.58887 (6)0.3226 (4)0.14164 (11)0.0594 (5)
C20.62009 (7)0.4878 (4)0.18591 (12)0.0656 (5)
H20.60810.63270.21220.079*
C30.66868 (8)0.4361 (4)0.19066 (14)0.0703 (5)
C40.68819 (7)0.2292 (5)0.15293 (14)0.0745 (6)
H40.72170.19840.15760.089*
C50.65712 (7)0.0677 (4)0.10794 (14)0.0732 (6)
H50.6697−0.07410.08070.088*
C60.60772 (7)0.1105 (4)0.10214 (12)0.0657 (5)
H60.5869−0.00260.07180.079*
C70.53603 (7)0.3860 (4)0.13667 (11)0.0608 (5)
C80.45358 (7)0.2026 (4)0.11934 (11)0.0599 (5)
C90.42706 (7)0.0146 (4)0.15561 (13)0.0675 (5)
H90.4431−0.11640.18650.081*
C100.37703 (7)0.0181 (4)0.14673 (13)0.0729 (6)
H100.3594−0.11250.17120.087*
C110.35222 (7)0.2093 (4)0.10264 (11)0.0675 (5)
C120.37940 (7)0.3956 (4)0.06655 (13)0.0705 (6)
H120.36340.52690.03590.085*
C130.42967 (8)0.3940 (4)0.07434 (13)0.0704 (5)
H130.44740.52280.04910.085*
C140.29774 (8)0.2111 (6)0.09397 (16)0.0916 (8)
H14A0.28500.20430.14950.137*
H14B0.28640.06470.06130.137*
H14C0.28670.36550.06550.137*
H10.5158 (7)0.055 (4)0.1353 (12)0.058 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
F10.0752 (8)0.0995 (10)0.1131 (11)−0.0114 (7)−0.0082 (7)−0.0173 (8)
O10.0711 (9)0.0616 (9)0.1023 (12)0.0027 (7)0.0107 (7)−0.0059 (7)
N10.0633 (9)0.0566 (9)0.0719 (10)0.0009 (9)0.0063 (7)0.0030 (8)
C10.0655 (11)0.0619 (10)0.0518 (9)−0.0016 (8)0.0112 (7)0.0049 (7)
C20.0692 (12)0.0646 (11)0.0636 (11)−0.0002 (10)0.0087 (8)−0.0013 (9)
C30.0681 (12)0.0758 (13)0.0669 (11)−0.0049 (10)0.0035 (9)0.0027 (9)
C40.0648 (11)0.0822 (14)0.0779 (13)0.0043 (11)0.0148 (9)0.0089 (11)
C50.0746 (13)0.0759 (13)0.0709 (12)0.0088 (11)0.0190 (9)−0.0006 (10)
C60.0705 (11)0.0665 (11)0.0610 (10)0.0004 (9)0.0127 (8)−0.0028 (8)
C70.0625 (10)0.0636 (11)0.0570 (10)0.0008 (9)0.0088 (8)−0.0002 (8)
C80.0605 (10)0.0645 (10)0.0551 (9)−0.0013 (8)0.0076 (7)−0.0050 (8)
C90.0657 (11)0.0717 (12)0.0659 (11)0.0011 (9)0.0100 (8)0.0067 (9)
C100.0717 (12)0.0787 (13)0.0694 (12)−0.0049 (11)0.0141 (9)0.0063 (10)
C110.0635 (11)0.0852 (14)0.0540 (10)0.0019 (10)0.0058 (8)−0.0085 (9)
C120.0712 (12)0.0729 (13)0.0663 (12)0.0063 (10)−0.0044 (9)0.0028 (9)
C130.0763 (12)0.0725 (12)0.0626 (11)−0.0045 (10)0.0041 (9)0.0088 (9)
C140.0683 (13)0.126 (2)0.0807 (15)0.0047 (14)0.0050 (11)−0.0041 (14)

Geometric parameters (Å, °)

F1—C31.364 (2)C6—H60.9400
O1—C71.238 (2)C8—C91.378 (3)
N1—C71.347 (3)C8—C131.380 (3)
N1—C81.427 (2)C9—C101.382 (3)
N1—H10.77 (2)C9—H90.9400
C1—C21.386 (3)C10—C111.384 (3)
C1—C61.397 (3)C10—H100.9400
C1—C71.496 (3)C11—C121.381 (3)
C2—C31.368 (3)C11—C141.504 (3)
C2—H20.9400C12—C131.388 (3)
C3—C41.370 (3)C12—H120.9400
C4—C51.377 (3)C13—H130.9400
C4—H40.9400C14—H14A0.9700
C5—C61.382 (3)C14—H14B0.9700
C5—H50.9400C14—H14C0.9700
C7—N1—C8126.25 (17)C9—C8—C13119.37 (18)
C7—N1—H1117.0 (15)C9—C8—N1118.68 (17)
C8—N1—H1115.6 (15)C13—C8—N1121.91 (17)
C2—C1—C6119.43 (17)C8—C9—C10120.14 (19)
C2—C1—C7117.56 (17)C8—C9—H9119.9
C6—C1—C7122.99 (17)C10—C9—H9119.9
C3—C2—C1118.83 (19)C9—C10—C11121.58 (19)
C3—C2—H2120.6C9—C10—H10119.2
C1—C2—H2120.6C11—C10—H10119.2
F1—C3—C2118.34 (19)C12—C11—C10117.44 (17)
F1—C3—C4118.61 (19)C12—C11—C14121.6 (2)
C2—C3—C4123.05 (19)C10—C11—C14120.9 (2)
C3—C4—C5117.92 (19)C11—C12—C13121.75 (18)
C3—C4—H4121.0C11—C12—H12119.1
C5—C4—H4121.0C13—C12—H12119.1
C4—C5—C6121.1 (2)C8—C13—C12119.71 (18)
C4—C5—H5119.4C8—C13—H13120.1
C6—C5—H5119.4C12—C13—H13120.1
C5—C6—C1119.65 (19)C11—C14—H14A109.5
C5—C6—H6120.2C11—C14—H14B109.5
C1—C6—H6120.2H14A—C14—H14B109.5
O1—C7—N1123.30 (18)C11—C14—H14C109.5
O1—C7—C1120.43 (17)H14A—C14—H14C109.5
N1—C7—C1116.27 (17)H14B—C14—H14C109.5
C6—C1—C2—C3−0.9 (3)C2—C1—C7—N1−152.62 (17)
C7—C1—C2—C3−179.24 (17)C6—C1—C7—N129.1 (3)
C1—C2—C3—F1−179.77 (18)C7—N1—C8—C9−144.0 (2)
C1—C2—C3—C40.6 (3)C7—N1—C8—C1338.1 (3)
F1—C3—C4—C5−179.27 (19)C13—C8—C9—C100.1 (3)
C2—C3—C4—C50.3 (3)N1—C8—C9—C10−177.82 (17)
C3—C4—C5—C6−1.0 (3)C8—C9—C10—C11−0.8 (3)
C4—C5—C6—C10.8 (3)C9—C10—C11—C120.9 (3)
C2—C1—C6—C50.2 (3)C9—C10—C11—C14−179.65 (19)
C7—C1—C6—C5178.47 (18)C10—C11—C12—C13−0.5 (3)
C8—N1—C7—O10.9 (3)C14—C11—C12—C13−179.9 (2)
C8—N1—C7—C1−178.66 (15)C9—C8—C13—C120.3 (3)
C2—C1—C7—O127.8 (3)N1—C8—C13—C12178.19 (17)
C6—C1—C7—O1−150.5 (2)C11—C12—C13—C8−0.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.77 (2)2.35 (2)3.087 (3)161 (2)

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2064).

References

  • Chopra, D. & Row, T. N. G. (2005). Cryst. Growth Des.5, 1679–1681.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Higashi, T. (1999). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2004). CrystalStructure and PROCESS-AUTO Rigaku/MSC, The Woodlands, Texas, USA.
  • Saeed, A., Khera, R. A., Gotoh, K. & Ishida, H. (2008). Acta Cryst. E64, o1934. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography