PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 November 1; 64(Pt 11): m1359.
Published online 2008 October 4. doi:  10.1107/S1600536808031292
PMCID: PMC2959721

Bis(2-amino­pyridine-κN 1)silver(I) nitrate

Abstract

The asymmetric unit of the title compound, [Ag(C5H6N2)2]NO3, consists of one and a half each of both cations and anions, the other halves being generated by crystallographic inversion centres. One of the AgI atoms lies on an inversion center and one of the nitrate ions is disordered across an inversion center. Each AgI atom is bicoordinated in a linear geometry by two N atoms from two 2-amino­pyridine ligands. In the crystal structure, the cations and anions are linked into a two-dimensional network parallel to (001) by N—H(...)O and C—H(...)O hydrogen bonds.

Related literature

For general background, see: Kristiansson (2000 [triangle]); Windholz (1976 [triangle]). For related structures, see: Deng et al. (2004 [triangle]); Yang et al.(2004 [triangle]). For bond-length data, see: Allen et al.(1987 [triangle]); Jebas et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1359-scheme1.jpg

Experimental

Crystal data

  • [Ag(C5H6N2)2]NO3
  • M r = 358.12
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1359-efi1.jpg
  • a = 43.3371 (10) Å
  • b = 5.8517 (1) Å
  • c = 15.1632 (3) Å
  • β = 100.502 (1)°
  • V = 3780.91 (13) Å3
  • Z = 12
  • Mo Kα radiation
  • μ = 1.61 mm−1
  • T = 100.0 (1) K
  • 0.71 × 0.31 × 0.16 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.394, T max = 0.782
  • 42747 measured reflections
  • 9821 independent reflections
  • 8093 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.075
  • S = 1.06
  • 9821 reflections
  • 293 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.91 e Å−3
  • Δρmin = −1.23 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808031292/ci2682sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031292/ci2682Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

H-KF thanks the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks the Universiti Sains Malaysia for a postdoctoral research fellowship.

supplementary crystallographic information

Comment

2-Aminopyridine is used in the manufacture of pharmaceuticals, especially antihistaminic drugs (Windholz, 1976). The silver(I) ion exhibits a large flexibility in its coordination with nitrogen-containing aromatic ligands, with coordination numbers ranging from two to eight (Kristiansson, 2000). As a part of our investigation on the binding modes of 2-aminopyridine with the metals, we report here the crystal structure of the title compound.

The asymmetric unit of the title compound consists of one and a half of both [Ag(C5H6N2)2]+ cation and nitrate anion. The other halves of the cation and anion are generated by crystallographic inversion centres. The Ag2 atom lies on an inversion center. Each AgI atom is bicoordinated in a linear geometry by two N atoms from two 2-aminopyridine ligands, with an N—Ag—N angle of 175.97 (6)° or 180°. Similar coordination is observed in bis(2-aminopyridine-κN1)silver(I) hexafluoroarsenate (Yang et al., 2004) and bis(2-aminopyridine-κN1)silver(I) perchlorate (Deng et al., 2004). The bond lengths in 2-aminopyridine ligands are found to have normal values (Jebas et al., 2007; Allen et al., 1987).

In the crystal structure, the cations and anions are linked by N—H···O and C—H···O hydrogen bonds (Table 1), generating a two-dimensional network parallel to the (001) [Fig.2].

Experimental

2-Aminopyridine in water and silver nitrate in ammonia solution in a molar ratio of 1:1 were mixed with each other and refluxed at 343 K for 6 h. Yellow crystals were obtained after a month on slow evaporation.

Refinement

The amino H atoms were located in a difference map and allowed to refine freely, with the N2-H1N2 distance restrained to 0.85 Å. The remaining H atoms were positioned geometrically (C—H = 0.93 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C). One of the nitrate ion is disordered across an inversion center at (1/4, 1/4, 1/2), with equal occupancy.

Figures

Fig. 1.
The structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. Both components of the disordered nitrate ion are shown.
Fig. 2.
Part of the crystal packing of the title compound, viewed along the c axis. Dashed lines indicate hydrogen bonding.

Crystal data

[Ag(C5H6N2)2]NO3F(000) = 2136
Mr = 358.12Dx = 1.887 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9946 reflections
a = 43.3371 (10) Åθ = 2.7–38.4°
b = 5.8517 (1) ŵ = 1.61 mm1
c = 15.1632 (3) ÅT = 100 K
β = 100.502 (1)°Block, yellow
V = 3780.91 (13) Å30.71 × 0.31 × 0.16 mm
Z = 12

Data collection

Bruker SMART APEXII CCD area-detector diffractometer9821 independent reflections
Radiation source: fine-focus sealed tube8093 reflections with I > 2σ(I)
graphiteRint = 0.032
[var phi] and ω scansθmax = 37.5°, θmin = 1.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −74→74
Tmin = 0.394, Tmax = 0.783k = −9→9
42747 measured reflectionsl = −25→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0208P)2 + 7.8111P] where P = (Fo2 + 2Fc2)/3
9821 reflections(Δ/σ)max = 0.001
293 parametersΔρmax = 0.91 e Å3
3 restraintsΔρmin = −1.23 e Å3

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Ag10.167632 (4)0.28414 (2)0.419586 (9)0.03102 (4)
Ag20.00000.50000.00000.02259 (4)
N10.15484 (3)0.5267 (2)0.51229 (9)0.0210 (2)
N20.20046 (5)0.7366 (4)0.52126 (17)0.0409 (5)
N30.17820 (3)0.0248 (2)0.32997 (10)0.0224 (2)
N40.12990 (4)−0.1493 (3)0.32282 (14)0.0315 (3)
N50.02529 (3)0.2267 (2)0.06994 (9)0.0186 (2)
N60.04353 (4)0.1195 (3)−0.05863 (9)0.0219 (2)
C10.12630 (4)0.5008 (3)0.53532 (12)0.0266 (3)
H1A0.11520.36760.51770.032*
C20.11291 (5)0.6585 (4)0.58280 (13)0.0342 (4)
H2A0.09330.63300.59780.041*
C30.12946 (5)0.8586 (4)0.60815 (14)0.0378 (5)
H3A0.12070.97150.63920.045*
C40.15844 (5)0.8889 (3)0.58741 (14)0.0337 (4)
H4A0.16971.02200.60450.040*
C50.17137 (4)0.7160 (3)0.53960 (12)0.0245 (3)
C60.20720 (4)0.0221 (3)0.30857 (14)0.0289 (3)
H6A0.22030.14630.32560.035*
C70.21823 (5)−0.1526 (4)0.26346 (16)0.0358 (4)
H7A0.2382−0.14660.24940.043*
C80.19870 (5)−0.3410 (4)0.23897 (14)0.0309 (4)
H8A0.2057−0.46380.20890.037*
C90.16925 (4)−0.3435 (3)0.25950 (12)0.0247 (3)
H9A0.1561−0.46830.24400.030*
C100.15902 (4)−0.1544 (3)0.30455 (11)0.0213 (3)
C110.02265 (4)0.1836 (3)0.15608 (11)0.0243 (3)
H11A0.01250.29080.18590.029*
C120.03415 (4)−0.0094 (3)0.20150 (11)0.0257 (3)
H12A0.0321−0.03210.26080.031*
C130.04910 (4)−0.1712 (3)0.15613 (12)0.0241 (3)
H13A0.0569−0.30540.18480.029*
C140.05227 (4)−0.1310 (3)0.06904 (11)0.0211 (3)
H14A0.0621−0.23790.03810.025*
C150.04047 (3)0.0740 (3)0.02689 (10)0.0168 (2)
N70.42167 (4)0.8502 (3)0.16126 (10)0.0247 (3)
O10.40629 (4)0.9276 (3)0.21680 (11)0.0424 (4)
O20.44689 (4)0.9364 (3)0.15093 (11)0.0398 (4)
O30.41119 (3)0.6776 (2)0.11617 (9)0.0267 (2)
N80.25139 (8)0.2036 (5)0.5180 (2)0.0269 (6)0.50
O40.22809 (7)0.2267 (5)0.52820 (18)0.0835 (9)
O50.26419 (7)0.0502 (5)0.5660 (2)0.0338 (6)0.50
H1N60.0430 (6)0.253 (5)−0.0764 (19)0.034 (7)*
H1N40.1229 (7)−0.034 (6)0.343 (2)0.045 (8)*
H2N60.0566 (6)0.034 (4)−0.0839 (17)0.028 (6)*
H2N40.1184 (7)−0.260 (5)0.310 (2)0.042 (8)*
H1N20.2107 (8)0.854 (6)0.536 (2)0.061 (10)*
H2N20.2088 (7)0.625 (4)0.499 (2)0.049 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ag10.05014 (9)0.01987 (6)0.02380 (6)0.00820 (6)0.00876 (6)−0.00160 (5)
Ag20.02482 (7)0.02088 (8)0.02184 (7)0.00686 (6)0.00365 (6)−0.00096 (6)
N10.0244 (6)0.0182 (6)0.0196 (5)0.0011 (5)0.0020 (5)−0.0018 (4)
N20.0327 (9)0.0262 (8)0.0647 (14)−0.0056 (7)0.0116 (9)0.0090 (9)
N30.0251 (6)0.0194 (6)0.0220 (6)0.0003 (5)0.0024 (5)−0.0025 (5)
N40.0265 (7)0.0261 (7)0.0442 (10)−0.0002 (6)0.0124 (7)0.0056 (7)
N50.0197 (5)0.0196 (6)0.0166 (5)0.0014 (5)0.0037 (4)−0.0017 (4)
N60.0282 (6)0.0204 (6)0.0183 (5)0.0042 (5)0.0081 (5)0.0010 (5)
C10.0225 (7)0.0304 (8)0.0248 (7)0.0002 (7)−0.0009 (6)−0.0001 (6)
C20.0263 (8)0.0494 (12)0.0262 (8)0.0118 (8)0.0030 (6)0.0016 (8)
C30.0428 (11)0.0406 (11)0.0260 (8)0.0212 (9)−0.0039 (8)−0.0110 (8)
C40.0417 (10)0.0204 (8)0.0329 (9)0.0063 (7)−0.0095 (8)−0.0080 (7)
C50.0275 (7)0.0171 (6)0.0268 (7)0.0005 (6)−0.0005 (6)0.0011 (6)
C60.0232 (7)0.0269 (8)0.0353 (9)−0.0029 (6)0.0019 (6)−0.0072 (7)
C70.0227 (8)0.0390 (11)0.0457 (11)0.0027 (8)0.0058 (7)−0.0105 (9)
C80.0331 (9)0.0270 (8)0.0310 (9)0.0073 (7)0.0016 (7)−0.0077 (7)
C90.0299 (8)0.0179 (6)0.0236 (7)0.0009 (6)−0.0025 (6)−0.0004 (6)
C100.0238 (7)0.0186 (6)0.0205 (6)0.0012 (6)0.0015 (5)0.0028 (5)
C110.0243 (7)0.0312 (8)0.0178 (6)0.0029 (6)0.0052 (5)−0.0023 (6)
C120.0255 (7)0.0350 (9)0.0161 (6)−0.0027 (7)0.0023 (5)0.0034 (6)
C130.0223 (7)0.0257 (8)0.0227 (7)−0.0014 (6)−0.0002 (5)0.0064 (6)
C140.0226 (6)0.0185 (6)0.0224 (7)0.0012 (5)0.0044 (5)0.0015 (5)
C150.0170 (5)0.0169 (6)0.0164 (5)−0.0009 (5)0.0024 (4)−0.0017 (5)
N70.0315 (7)0.0195 (6)0.0218 (6)0.0061 (5)0.0011 (5)0.0018 (5)
O10.0510 (9)0.0404 (8)0.0358 (8)0.0172 (8)0.0082 (7)−0.0138 (7)
O20.0404 (8)0.0332 (8)0.0431 (8)−0.0102 (7)0.0008 (6)0.0149 (7)
O30.0302 (6)0.0249 (6)0.0254 (6)0.0021 (5)0.0061 (5)−0.0067 (5)
N80.0210 (12)0.0245 (17)0.0309 (17)0.0005 (12)−0.0069 (12)−0.0071 (11)
O40.106 (2)0.0855 (18)0.0630 (15)−0.0602 (17)0.0273 (14)−0.0217 (13)
O50.0347 (14)0.0324 (14)0.0329 (14)0.0093 (12)0.0026 (11)0.0020 (12)

Geometric parameters (Å, °)

Ag1—N12.1406 (14)C4—H4A0.93
Ag1—N32.1413 (14)C6—C71.364 (3)
Ag2—N5i2.1115 (14)C6—H6A0.93
Ag2—N52.1115 (14)C7—C81.398 (3)
N1—C51.343 (2)C7—H7A0.93
N1—C11.354 (2)C8—C91.368 (3)
N2—C51.345 (3)C8—H8A0.93
N2—H1N20.83 (4)C9—C101.414 (2)
N2—H2N20.85 (4)C9—H9A0.93
N3—C101.350 (2)C11—C121.369 (3)
N3—C61.354 (2)C11—H11A0.93
N4—C101.341 (2)C12—C131.397 (3)
N4—H1N40.82 (3)C12—H12A0.93
N4—H2N40.82 (3)C13—C141.373 (2)
N5—C151.3473 (19)C13—H13A0.93
N5—C111.355 (2)C14—C151.411 (2)
N6—C151.354 (2)C14—H14A0.93
N6—H1N60.83 (3)N7—O21.239 (2)
N6—H2N60.89 (3)N7—O11.250 (2)
C1—C21.363 (3)N7—O31.257 (2)
C1—H1A0.93N8—N8ii0.764 (6)
C2—C31.390 (4)N8—O41.058 (4)
C2—H2A0.93N8—O51.223 (4)
C3—C41.361 (3)N8—O4ii1.294 (5)
C3—H3A0.93O4—N8ii1.294 (5)
C4—C51.418 (3)
N1—Ag1—N3175.97 (6)N3—C6—C7123.67 (17)
N5i—Ag2—N5180.00 (10)N3—C6—H6A118.2
C5—N1—C1118.27 (15)C7—C6—H6A118.2
C5—N1—Ag1124.21 (12)C6—C7—C8118.27 (18)
C1—N1—Ag1116.97 (12)C6—C7—H7A120.9
C5—N2—H1N2120 (2)C8—C7—H7A120.9
C5—N2—H2N2120 (2)C9—C8—C7119.52 (17)
H1N2—N2—H2N2120 (3)C9—C8—H8A120.2
C10—N3—C6118.18 (15)C7—C8—H8A120.2
C10—N3—Ag1122.67 (11)C8—C9—C10119.31 (17)
C6—N3—Ag1118.41 (12)C8—C9—H9A120.3
C10—N4—H1N4121 (2)C10—C9—H9A120.3
C10—N4—H2N4119 (2)N4—C10—N3118.52 (16)
H1N4—N4—H2N4119 (3)N4—C10—C9120.47 (17)
C15—N5—C11118.54 (14)N3—C10—C9121.01 (16)
C15—N5—Ag2120.92 (10)N5—C11—C12123.47 (16)
C11—N5—Ag2119.85 (11)N5—C11—H11A118.3
C15—N6—H1N6119.7 (19)C12—C11—H11A118.3
C15—N6—H2N6118.9 (16)C11—C12—C13118.07 (15)
H1N6—N6—H2N6112 (2)C11—C12—H12A121.0
N1—C1—C2123.88 (19)C13—C12—H12A121.0
N1—C1—H1A118.1C14—C13—C12119.62 (16)
C2—C1—H1A118.1C14—C13—H13A120.2
C1—C2—C3117.93 (19)C12—C13—H13A120.2
C1—C2—H2A121.0C13—C14—C15119.34 (15)
C3—C2—H2A121.0C13—C14—H14A120.3
C4—C3—C2119.80 (18)C15—C14—H14A120.3
C4—C3—H3A120.1N5—C15—N6118.38 (14)
C2—C3—H3A120.1N5—C15—C14120.90 (14)
C3—C4—C5119.50 (19)N6—C15—C14120.71 (14)
C3—C4—H4A120.2O2—N7—O1121.89 (18)
C5—C4—H4A120.2O2—N7—O3119.84 (16)
N1—C5—N2118.52 (18)O1—N7—O3118.26 (17)
N1—C5—C4120.53 (17)O4—N8—O5110.4 (4)
N2—C5—C4120.94 (19)
C5—N1—C1—C21.7 (3)C6—N3—C10—C92.1 (2)
Ag1—N1—C1—C2−170.08 (15)Ag1—N3—C10—C9−167.90 (12)
N1—C1—C2—C30.7 (3)C8—C9—C10—N4177.81 (18)
C1—C2—C3—C4−1.7 (3)C8—C9—C10—N3−2.1 (3)
C2—C3—C4—C50.4 (3)C15—N5—C11—C12−1.1 (3)
C1—N1—C5—N2176.31 (18)Ag2—N5—C11—C12169.43 (14)
Ag1—N1—C5—N2−12.5 (2)N5—C11—C12—C13−0.7 (3)
C1—N1—C5—C4−3.1 (3)C11—C12—C13—C141.1 (3)
Ag1—N1—C5—C4168.05 (13)C12—C13—C14—C150.3 (2)
C3—C4—C5—N12.1 (3)C11—N5—C15—N6−178.89 (15)
C3—C4—C5—N2−177.3 (2)Ag2—N5—C15—N610.64 (19)
C10—N3—C6—C7−0.6 (3)C11—N5—C15—C142.6 (2)
Ag1—N3—C6—C7169.84 (18)Ag2—N5—C15—C14−167.88 (11)
N3—C6—C7—C8−0.9 (3)C13—C14—C15—N5−2.2 (2)
C6—C7—C8—C90.9 (3)C13—C14—C15—N6179.32 (15)
C7—C8—C9—C100.5 (3)O5—N8—O4—N8ii−177.8 (7)
C6—N3—C10—N4−177.77 (17)O4ii—N8—O4—N8ii0.0
Ag1—N3—C10—N412.2 (2)

Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1/2, −y+1/2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N6—H1N6···O2iii0.83 (3)2.22 (3)3.016 (2)160 (3)
N4—H1N4···O3iv0.82 (3)2.11 (3)2.879 (2)157 (3)
N6—H2N6···O3v0.89 (3)1.99 (3)2.873 (2)169 (2)
N4—H2N4···O1vi0.82 (3)2.12 (3)2.934 (3)173 (3)
N2—H1N2···O4vii0.83 (4)2.32 (4)3.102 (3)159 (3)
N2—H1N2···O5vii0.83 (4)2.55 (4)3.282 (4)148 (3)
N2—H2N2···O5ii0.84 (1)1.95 (1)2.767 (4)161 (3)
N2—H2N2···O40.85 (4)2.49 (2)3.210 (4)144 (3)
C1—H1A···O3iv0.932.413.183 (2)140
C6—H6A···O5ii0.932.433.250 (4)147
C13—H13A···O1vi0.932.523.406 (2)159

Symmetry codes: (iii) −x+1/2, −y+3/2, −z; (iv) −x+1/2, y−1/2, −z+1/2; (v) −x+1/2, −y+1/2, −z; (vi) −x+1/2, y−3/2, −z+1/2; (vii) x, y+1, z; (ii) −x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2682).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Deng, B., Liu, Z.-D., Liu, X.-Y., Tan, M.-Y. & Zhu, H.-L. (2004). Acta Cryst. E60, m1444–m1446.
  • Jebas, S. R., Balasubramanian, T. & Slawin, A. M. Z. (2007). Acta Cryst. E63, m1624–m1626.
  • Kristiansson, O. (2000). Acta Cryst. C56, 165–167. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Windholz, M. (1976). The Merck Index, 9th ed. Boca Raton: Merck & Co. Inc.
  • Yang, H.-L., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, m1215–m1217.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography